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6 1 Introduction – Technical Statement of Work

1

Introduction – Technical Statement of Work

This document provides a final report of the FA8655-04-1-3044 research effort entitled Advanced
Agent Methods in Adversarial Environment and funded by AFRL/EOARD. It provides a compre-
hensive research report detailing the technical results of the project. Therefore, this report incor-
porates major parts of two previous reports and adds the research results achieved during the last
phase of the project.

Present delivery consists of this report and demonstration CD and contains the elements listed
hereafter:

1. Paper and electronic version of this report
2. Source code of the current version of A-globe multi-agent platform and ACROSS scenario in-

cluding the project-specific mechanisms such as trust model and stand-in agents
3. Demonstrations that replicate the principal experiments presented in this report: trust modelling

and stand-in network optimization
4. Demonstration videos presenting the ACROSS domain, A-globe platform and stand-in opti-

mization

This delivery is going to be delivered in electronic and paper forms. The final delivery will be
available for download from:

ftp://adversarial:FA8655-04-1-3044@agents.felk.cvut.cz
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1.1 Introduction

In the project white-paper the technical work has been specified by means of the four specific research
targets that we address in the following:

– RT1: Competitive and Adversarial Domains Our contributions to the first research target
are presented in Chapter 4. ACROSS domain (generic scenario) with self-interested agents fea-
turing private preferences and competitive environment was designed and developed. Upon this
scenario, we have added the specific support for adversariality modelling: the bandit agents. And
finally, we have leveraged the scenario to simulate the natural disasters and humanitarian effort
planning in the environment with competitive and adversarial agents.

– RT2: Reasoning in Competitive and Adversarial Domains The main contribution to this
research target is an innovative lightweight trust model that is suitable for embedded devices.
Its crucial properties are: (i) use of efficient yet rich fuzzy arithmetics to represent the uncer-
tainty, coalition cooperation concept that is included into the model, robustness with respect to
significant observation noise and autonomous environment adaptation. This model is presented
in dedicated Chapter 5.
To further extend the use of the model output, we have designed a mechanism for efficient,
trust-bases negotiation in adversarial domains, presented in Section 7.3. This mechanism tightly
integrates the trust model with agent’s reasoning (implemented by operations research techniques
in our model) and social knowledge.

– RT3: Reasoning in Environments with Communication Inaccessibility In the scope
of this target, we present two principal results: an analysis of existing solution for cooperation
in inaccessible environment, including relaying, various middle agents, social knowledge use and
stand-in agents designed in course of the previous project. In the comparison, we offer the exper-
iments that analyze the usefulness of each solution in diverse states of environment accessibility
as these are defined in the inaccessibility model developed as a part of the deliverable under RT4.
During the project, we have discovered that the main obstacle in use of all the above technologies
is the efficiency of the solution in the highly dynamic environments (typically ad-hoc networks
with mobile nodes). Therefore, we have devised a generic optimization technique for stand-in
agents that has several interesting aspects: high system robustness, rapid convergence in both
number of agents and messages and last, but not least the mechanism works only with local
information and achieves the global optimum reasonably fast. All the findings related to this
research target are included in Chapter 6.

– RT4: Measuring Properties of the Community In the domain of community modelling,
we present two contributions defined in Chapter 2 and Chapter 3 respectively: formal model of
adversariality and a formal model of accessibility. The first model answers a crucial and non-
trivial question, as it tries to draw meaningful boundaries between competitive, self-interested
and adversarial behavior. The second model doesn’t define the accessibility, as this definition is
a result of the previous effort – it provides a meaningful model of accessibility using the random
graph theory and describes important states of accessibility in a multi-agent system. Therefore,
it is instrumental for the development of any inaccessibility solution.

Besides these tasks, we have invested in the development of several new features of A-globe
platform as described in Appendix A. Some of these requirement were directly driven by the needs
of our research scenario, while the others (e.g. migration support for libraries) were added to address
the demands from the AFRL platform users.

As stated earlier, this document is a final report of the presented research effort. As such it
builds on the results presented in the interim reports delivered earlier. Appropriate linkage to the
previously published reports is denoted in Table 1.1. This approach makes the report a self-contained
document.

Results of the research project were presented at several conferences and other forums. List of
publications includes:
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Chapter 1 – Introduction – Technical Statement of Work new in FR
Chapter 2 – Formal Model of Adversarial Behavior IR1, FR
Chapter 3 – Inaccessible Environment and its Properties IR1
Chapter 4 – Modelling Inaccessibility and Adversarial Behavior IR1, IR2, FR
Chapter 5 – Using Trust for Coalition Formation in Adversarial Environment IR1, IR2
Chapter 6 – Solving Inaccessibility in the Adversarial Environment IR1, IR2
Chapter 7 – Efficient Teamwork in Inaccessible and Adversarial Environment new in FR
Chapter 8 – Conclusions and Future Work new in FR
Appendix A – Progress in A-globe Multi-Agent Platform Development IR1, IR2, FR

Table 1.1. Linkage of this report (FR) to the previous published reports: Interim Report 1 (IR1) and
Interim Report 2 (IR2). For each chapter, we list the reports where it was introduced or updated.

– Šǐslák, D. - Rollo, M. - Pěchouček, M.: A-globe: Agent Platform with Inaccessibility and Mobility
Support, in Cooperative Information Agents VIII, LNAI-3191, Springer-Verlag, Heidelberg, 2004

– Rehák, M. - Pěchouček, M. - Tožička, J. - Šǐslák, D.: Using Stand-In Agents in Partially Accessible
Multi-Agent Environment, Proceedings of Engineering Societies in the Agents World, Springer-
Verlag, 2005

– David Šǐslák, Michal Pěchouček, Martin Rehák, Jan Tožička, Petr Benda: Solving Inaccessibil-
ity in Multi-Agent Systems by Mobile Middle-Agents. In: Multiagent and Grid Systems - An
International Journal, IOS press (accepted for publication), ISSN 1574-1702, 2005
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– Martin Rehák, Michal Pěchouček, Jan Tožička: Adversarial Behavior in Multi-Agent Systems,
Proceedings of EUMAS 2005, workshop, accepted for publication

Besides, the A-globe platform with ACROSS scenario has been awarded following awards:
CIA (Cooperative Information Agents) System Innovation Award at the CIA workshop in
Erfurt, 2004;
The 2005 IEEE/WIC/ACM WI-IAT Joint Conference: The Best Demo Award, in Com-
piegne, September 2005



2.1 Introduction 9

2

Formal Model of Adversarial Behavior

The first step towards a realistic modelling of the adversarial environment is a correct definition of
adversariality in a multi-agent system. This chapter is dedicated to the definition, that is based on
recognized foundations from law, economics and conflict theory, and is consistent with existing work
in the computer science domain. This definition is of foremost relevance in open systems, where
the collaborating agents belong to more than one party and represent different, even if overlapping
interests.

2.1 Introduction

Openness, implemented by ad-hoc integration – both syntactic and semantic interoperability – comes
with a price. In such environments, we can no longer assume that the agents are cooperative. The
agents in these system can have their own, sometimes partially or even completely antagonistic goals
and they often compete for the shared resources or opportunities.

In such environments, we must ensure that the system as a whole will autonomously maintain its
sustainability and efficiency, that self-interested agents will be able to agree at least on some goals
and that their cooperation will leverage their capabilities. To do so, agent researchers frequently
introduce the concepts from microeconomics and game theory, most notably mechanism design [20].
Mechanism design is used to design interaction patterns in the system to promote globally desirable
behavior and reduce incentive for undesirable behavior. However, despite the fact that it will provide
the basis of the algorithms and protocols of such systems, it still suffers from some serious limitations.
Mechanism design techniques have achieved some spectacular results, but their applicability is in
general restricted to static environments, where the fine-tuned mechanisms perform well. However,
the problems like bounded rationality of the agents, their possible polyvalence, strategic behavior
and willingness to keep some of their knowledge private can not be completely addressed by the
current mechanisms [26].

Alternatively, similar results can be achieved using norms [19], enforcing flexible social commit-
ments [47], adjustable policies [72] or trust and reputation [16, 60]. But in general, these approaches
rely on the fact that the agents are able to distinguish the undesirable behavior in all possible con-
texts. Therefore, as the system adapts to its environment, the norms, policies and trust mechanisms
must be adapted as well to avoid becoming an obstacle of system efficiency, rather than to support
it.

In this work, we will look at the problem from somewhat different perspective – after the brief
analysis of existing approaches in the multi-agent field, we will use the conflict theory and some
fundamental principles from the economy and law to consistently define the adversarial behavior in
the multi agent system (Section 2.2) and provide a specific example that instantiates the definition
in Section 2.3.
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Currently, adversariality in the multi-agent systems is a concept that has been defined in many
different contexts. Most of the current definitions are mutually exclusive, but they provide a valuable
guidance in our attempt to formalize the definition using their overlaps.

In the field of multi-agent systems, adversarial planning was introduced [76] to analyze the
behavior of two opponents. However, even if the approach remains interesting due to the analysis
of planning in conflicting environment, it is of limited importance for the definition of adversarial
behavior. The definition proposed by the authors, where they define adversariality by ”opposite
goals” doesn’t fit our needs, as the agents in the general system we consider (i) are not always
adversarial and at least some of their goals are common, (ii) communicate by other means than pure
actions, (iii) have asymmetric and partial knowledge and (iv) are deliberative, therefore possibly
adversarial within the limited scope of time or issues.

In the mechanism-design field, [26] defines adversarial entities as the entities who’s goals can not
be described by a utility function and assumes these actors to be irrational. This definition well
captures the fact of bounded rationality of agent perceptions - some agents can have goals that are
impossible to capture and understand during normal system operations and that are justified by
large scale (time or space) behavior of their owners.

We shall use the conclusions from the field of the conflict theory to (i) determine the defining
properties of adversariality as they are currently understood.

In his contribution [25], James Fearon analyzes the war between two or more perfectly rational
states. For Fearon, the most important distinguishing property of the war from the rationalist point
of view is the war’s ex-post inefficiency – he argues that the states can reach the same result
by negotiation, eliminating the cost of the adversarial actions: ”...ex-post inefficiency of war opens
up an ex-ante bargaining range...”[25]. This is clearly visible from the simple conflict specification
proposed by author.

In the work of Posner and Sykes [57], approaching the problem of optimal war from the legal
perspective, the aggression (unilateral beginning of the war) is defined as an action that is socially
undesirable and imposing net social cost, while the authors assume that the aggression is motivated
by the expected profit of the aggressor, either as a result of war or the threat. They argue that this
definition of aggression is consistent with the studies on the economics of crime [9], where the gains
of criminal are smaller than the social cost of act.

In his breakthrough article, Gary Becker [9] analyzes the economics of crime, incentives of
criminals, their economic motivation and dissuasive effect of punishments and functional justice
system. Besides the definition of criminal activity stated above, the notion of indirect costs is also
important. Costs of crime are not only direct, but we must consider the cost of law enforcement
as inseparable from the direct crime costs. In a multi-agent system, the well designed mechanisms
and trust maintenance models come with a cost that may harm the system efficiency through their
computational requirements and other associated requirements. This doesn’t mean a refusal of the
principle of trust maintenance and mechanism design, but it means that the mechanism must be
efficient and well adapted to the current environment.

2.2 Adversarial Behavior Definition

This section is devoted to the formal definition and characterization of adversarial behavior in the
multi-agent systems. We will depart from the conflict theory premise stated above that conflict is an
ex-post inefficient method of resolving competitive issues that imposes a net cost on the society, and
we will base our formal definition on these notion. Similar classification was done in [13], but focused
on interaction between different types of agents rather than on definition of types of behavior and
didn’t use the conflict theory. However, some preliminary technical definitions are necessary.

In the following, we will use capitals to denote agents.
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Fig. 2.1. Cooperative, Competitive and Adversarial actions. Pie represents the total utility u and individual
utilities uA, uB , .... We can see that purely cooperative action increases social welfare, purely competitive
action doesn’t modify the social welfare, but only changes its distribution among agents, while the purely
adversarial action reduces the social welfare without any benefit for the agent. In practice, real actions are
rarely pure and are a combination of the above types.

Utility is defined as ”a value which is associated with a state of the world, and which represents
the value that the agent places on that state of the world” by [46].

To simply state our problems, we will define a simple abstract game model featuring agent set
Ag = {A,B,C, ...} with the agents playing a non-extensive (single round) game that is not strictly
competitive – sum of all agents’ utilities is not constant. Each agent X has a set of available ac-
tions denoted a∗X , with actions ai

X ∈ a∗X (whenever possible, we only write aX). From this set,
agent selects its action using its strategy. We suppose that all agents do the selection at one mo-
ment and therefore the selected actions are independent. The final state, outcome of the game1

o(aA, aB , ...) is determined by strategies of the agents and determines both the individual agents’
utilities uA(o), uB(o), uC(o), ... and the social choice function u(o) = uA(o) + uB(o) + uC(o) + ...,
considered to represent the social welfare [20].

In this simplistic game, we can define cooperative, competitive and adversarial behavior in ac-
cordance with the principles from mentioned above. As the social outcome is known after the end
of the game, the definitions bellow also evaluate agents’ actions ex post. Simplified graphical form
of the definitions is presented in Fig. 2.1.

In the cooperative environment, all agents do share a single utility function.

Definition 2.1 We say that agent’s A action acoop
A is a cooperative action if it maximises social

welfare:
coop(acoop

A ) ⇔ u(acoop
A , aB , ...) = max

ai
A∈a∗A

u(ai
A, aB , ...)

The complete opposite is the self-interested environment, where the agents are trying to maximise
their profit.

Definition 2.2 We say that agent’s A action asi
A is a self-interested action if it maximises agents’

individual utility:
1 The exact form of the outcome is irrelevant, if we are able to obtain the utility values. To simplify the

notation, we will also write u(aA, aB , ...) instead of technically more correct u(o(aA, aB , ...)).
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si(asi
A) ⇔ uA(asi

A , aB , ...) = max
ai

A∈a∗A

uA(ai
A, aB , ...)

In many contexts, the terms self-interestedness and competitiveness are considered to be syn-
onymous. However, we consider the competitiveness to be more strict. In [13], self interestedness is
defined as not taking the utility of the others into the consideration while maximizing own utility,
while [31] requires the trust between competitors, allowing them to avoid globally undesirable out-
comes. In the systems with carefully programmed mechanisms, the results are equivalent in both
cases. However, in many real-world cases the total utility may decrease, even if each agent optimizes
locally (a prison dilemma is a nice example of this situation [5]).

In the competitive environment, agents select actions to maximize their own private utility, but
they restrict their choice to the actions that at least conserve the social welfare.

Definition 2.3 We say that agent’s A action acomp
A is a competitive action provided that it

maximizes individual profit while does not allow drop of the social welfare:

comp(acomp
A ) ⇔ uA(acomp

A , aB , ...) = max
ai

A∈a∗∗A

uA(ai
A, aB , ...),

where ∀ai
A ∈ a∗∗X : u(ai

A, aB , ...) ≥ u(aB , ...).

The expression u(aB , ...) represents hypothetical outcome of the community in the case when the
agent A performs no action or is not in the community at all. This situation is illustrated later on
Figure 2.2 by ∼ symbol.

Finally, let us try to define the concept of the adversarial action. Let us do it in several steps. The
most intuitive definition would be that the adversarial action is such an action that is deliberatively
preferred to another action that is equally achievable but has got higher social welfare utilities.

The main trouble with this definition is that it contains all actions that are not cooperative
including self-interested agents who are simply motivated by an increase of their individual utility
and they do not consider the information about social welfare in their decision making.

This is why we make an attempt to define an adversarial action as an action that significantly
decreases the social welfare while it causes loss or provides only small profit to the actor of the
action.

Definition 2.4 We say that agent’s A action aadv
A is an adversarial action if: adv(aadv

A ) ⇔ ∃ai
A ∈

a∗A :

1. u(aadv
A , aB , ...) � u(ai

A, aB , ...) and
2. u(ai

A, aB , ...)− u(aadv
A , aB , ...) � uA(aadv

A , aB , ...)− uA(ai
A, aB , ...).

Similar meaning of the definition can be paraphrased as follows:

Definition 2.5 We say that agent’s A action aadv
A is an adversarial action if: adv(aadv

A ) ⇔ ∃ai
A ∈

a∗A: u(aadv
A , aB , ...) � u(ai

A, aB , ...) and uA(aadv
A , aB , ...) . uA(ai

A, aB , ...).

The definitions 2.4 and 2.5 above states that the adversarial action aadv
A selected by A from the

set a∗A hurts the social welfare without strong incentive. To make the formalism simpler, we have
assumed that there is only single action aadv

A of agent A that hurts the social welfare. There are
several interesting points to consider in the general definition.

The first point is the non-emptiness of the set a∗A \{aadv
A } - we don’t consider the behaviour with

no alternative as adversarial.
Motivation and justification of the adversarial action is closely related to two relational operators

used in the definition: � and .. The first inequality � signifies that the agent shall not cause
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significant harm to the common welfare, while the inequality .2 means that the agent remains self-
interested and it will not lose a significant part of its welfare to save the utility of other agents. The
concept is illustrated by Fig. 2.2. In this context, it is important not to take our simplification of
the game formalism literally and to consider only immediate payoff as the utility – in most systems,
agents expect to encounter their partners again in the future and we suppose that the attitudes of
their partners towards them and expected future profits are included in the utility uX

3. Formally,
we may pose:

Definition 2.6 We say that action aj
A of agent A is rationally adversarial if it is both self-

interested and adversarial. In the action is not self-interested and is adversarial, it is irrationally
adversarial.

Self-Interested

Cooperative

Irrational

Global Utility

Ind. Utility.

Pure Altruist Competitive
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Advers.

<< >>~

<<

>>

~

Fig. 2.2. Classification of action with respect to global utility (social welfare) and individual utility of acting
agent. The ∼ symbol corresponds to the situation where the agent A performs some neutral action or is not
in the community at all, i.e. u(aB , ...).

2.2.1 Properties of Adversarial Action

Pareto-Optimality

In this context, we may mention the relationship between adversariality and Pareto-Optimality4.
An outcome of an adversarial action is not Pareto optimal. Rationally adversarial action is not

Pareto optimal in the situations where the agents may negotiate and transfer the utility - in such
situations, the agents may always transfer enough utility to motivate the adversarial agent to behave
2 We actually mean that the agent has no, or very little motivation to make an adversarial move. In Def.

2.6, we treat the special case when we fall into the ∼ case.
3 In this point, we are consistent with the utility definition given above. We have omitted the explicit future

gains member in the definitions to simplify the notation by using this broader definition of utility.
4 Following [41], we denote as o∗ a set of all achievable outcomes and we define: Outcome o is considered

to be Pareto optimal if : (i) it is achievable (i.e. o ∈ o∗) and (ii) not majored by any other outcome
o′ ∈ o∗ \ {o}, where we define majoring as: ∀X∈AguX(o′) ≥ uX(o) and ∃X∈AguX(o′) > uX(o).
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cooperatively, therefore achieving socially acceptable outcome. When the utility is not transferable
(e.g. indivisibility as defined in [25]), the set o∗ is severely restricted and even an action that causes
the overall social loss may be considered non-adversarial due to the lack of alternative. In the
irrationally adversarial case, Pareto optimality does not hold neither, as the utility is lost both by
adversarial agent and the society as a whole.

As stated above, an outcome of an adversarial action is not Pareto optimal in the situations:

– where the agents may negotiate and transfer the utility, and
– the action is irrationally adversarial – uA(aadv

A ) < 0.

This property can be used mainly in the situation where the community consists of a coalition
of mutually trusted actors and one agent whose adversariality is subject of investigation.

On the other hand, Pareto optimality as such doesn’t preserve social welfare (due to the indi-
visibility), it only ensures that all agents behave rationally given the knowledge about the action of
the others.

Intentionality of Adversarial Action

Another point to address is the predictability of the outcome that is closely related to intentionality
of the respective adversarial action. The uncertainty of o arises from the simultaneity of all players’
moves, while the uncertainty of values uX(o) and u(o) exists due to the privacy of functions uX .
This seems to make the definition useless – but social knowledge and norms can provide solutions.
In most situations, the individuals are able to estimate the actions of others (denoted aexp

X ) and the
effects of different outcomes on their utility.

Therefore, without considering norms, we pose:

Definition 2.7 We say that action aadv
A of agent A is intentionally adversarial if:

1. the action is adversarial according to definition 2.5: adv(aadv
A ), and

2. the agent A knows that it is adversarial: (Bel A adv(aadv
A )), and

3. expects the actions aAi
of the other agents to happen next: (Bel A X(Perform Ai aAi

))5, and
4. implements the action aadv

A : X(Perform A aadv
A ).

More specifically, the lack of norms or conventions is a possible cause of unintentional adversar-
iality – the adversarial outcome may arise due to the limited computational power or knowledge of
agents, private knowledge or the environmental noise. Important question of attribution must be
solved by each agent – we can not expect that all agents will agree on the cause of the common loss.

Existence of shared normative system reduces the uncertainty regarding the expected actions of
other agents (aexp

X ). In our future work, we will use this system in the adapted definition of adversarial
action. On the other hand, definition 2.5 remains valid, as it provides feedback for update of the
normative system in changing environment.

Realisation of Adversarial Action

So far, we have defined adversarial action, rational adversarial action and intentional adversarial
action. However, we still have to define adversarial agent. The way how the concept of adversarial
action is mapped into adversariality of an agent is through actual realisation of an adversarial action.
5 Where the X operator is a temporal logic operator representing validity of a formula in the next time step

or near future in the case of environment with continuous time.
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Definition 2.8 We say that agent A is adversarial (or there exists adversarial behavior
performed by the agent A) if the agent A performed at least one adversarial action in the past:
adv(A) ⇔ ∃aadv

A :
adv(aadv

A ) ∧ P(Perform A aadv
A )

In the definition, we assume that the predicate adv classifying the actions is defined according to
the property 2.5, the P operator to be a temporal logic operator representing validity of a formula
in the past and the operator Perform linking an agent and the action performed by the agent.

There are clear extensions of this definition of adversarial behavior that define adversariality in
a time window, or agent’s adversarial behavior with relation to a specific agent community. In the
definition 2.8 we assume by default the whole of the community as a target of agent’s adversariality
and the whole past as the relevant time window.

Implication of Adversarial Behaviour

We are interested in the impact of the adversarial action on the global social welfare of the community
Ag. We say that:

– decrease of social welfare does not imply existence of an adversarial behavior in the community,
– unnecessary decrease of social welfare implies existence of an adversarial behavior (intentional

or unintentional) in the community, while
– existence of an adversarial behavior in the community does not imply decrease of social welfare.

For the proof of these statements, let us consider only types of actions according to the definitions
2.1, 2.3 and 2.5. No combination of cooperative and competitive actions may cause an overall decrease
of the social welfare, thus an existence of at least one adversarial action is inevitable. In contrary,
for a combination of adversarial actions there may exist a compensating combination of cooperative
or competitive actions that can be carried out by any member of the community in the finite time
t so that in t the social welfare does not decrease.

The definition 2.8 does not classify performance of an action that has got a direct inevitability
(or possibly an option) of an adversarial action as its effect as adversarial behavior.

2.3 Examples of Adversarial Behaviour

2.3.1 Adversariality in Coalition Formation

In this example, we will illustrate rather abstract definitions provided above with the real example,
the coalition formation, approaching the problem from the utility side. We will start by introducing
the necessary notation. In this section, we consider the coalition to be short-lived and therefore the
terms adversarial action of agent A and adversarial agent A will be used interchangeably.

Using the concept of the marginal utility6, we may now define cooperative and competitive
behavior in our example.
6 Agent’s A marginal utility (mu) from joining the coalition C (an activity denoted as A 7→ C) is a difference

between the agent’s utility before and after it joins the coalition ( muA 7→C(A) = uA∈C(A) − uA 6∈C(A) ,
where uA∈C(A) is a utility the agent A (in parentheses) receives as a member of the coalition C (situation
is described by subscript), while uA 6∈C(A) denotes the utility agent A receives if it doesn’t join the coalition
C). The marginal utility of a coalition C in agent’s A joining the coalition is defined as a derivation of
the collective utility (such as social welfare) of the coalition before and after the agent joins the coalition
(muA 7→C(C) = u(C ∪A)− u(C)).
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We say that agent A is collaborative provided that: if an agent A makes an attempt to join
the coalition C then always muA 7→C(C) > 0. We shall note that even if all agents are collaborative,
the optimum result is not guaranteed. A typical case can be described as follows: muB 7→C(C ∪B) >
muA 7→C(C ∪A) ≥ 0 and muB 7→(C∪A)(B) < 0. If A joins the coalition first, it blocks the entry of B
and only local optimum is reached.

We say that agent A is competitive provided that: if an agent A makes an attempt to join the
coalition C then always muA 7→C(A) > 0 and muA 7→C(C) ≥ 07. Similarly, we say that agent A is
self-interested provided that: if an agent A makes an attempt to join the coalition C then always
muA 7→C(A) > 0.

As we have already stated before, self-interested agent considers only its own profit while it takes
coalition entry decision. Competitive agent is both self interested and collaborative, as it maximizes
its own profit, but it at least maintains the social welfare that is represented by the coalition utility.
Therefore, in both competitive and cooperative behavior, the social welfare is maintained. This is
not necessarily true in the self-interested or adversarial behavior.

In this example, we will use the marginal utility defined above to define adversarial behavior. We
say that an agent is adversarial provided:

– muA 7→C(A) . 0
– muA 7→C(C) � 0
– agent A makes an attempt to join the coalition C

Informally, an agent is adversarial with respect to coalition C provided that the increase of his
direct marginal utility is significantly smaller than the harm (decrease of the total payoff) caused to
the coalition.

If the condition muA 7→C(A) ≥ 0 holds, agent’s action is rationally adversarial, otherwise it is
irrationally adversarial, as defined in definition 2.6.

Main advantage of the above definition is that it provides a basis for the detection of adversarial
agents, by defining the metrics measuring the adversariality.

Gathering and maintaining such experience is not trivial. However, we may reuse the existing
work on trust, where one of the components of the trust [16] – intentional trust (willingness) – is a
complement of intra-community adversariality defined above. Therefore, if we establish a reasonable
value for trust (that may be actually lower, due to the capability trust), we may deduce an acceptable
estimation of agent’s adversariality. This is one of the considerations taken into account for the
development of trust model described in Chapter 5.

2.3.2 Adversariality Flight-plan Deconfliction

The other motivation example we wanted to illustrate the idea of adversarial action is from the less
abstract domain of UAV (Unmanned Aerial Vehicle) flight-plan deconfliction. Let us operate two
UAVs A and B. We have situation where the two UAVs are facing a collision and they individually
deliberate about the actions d(A) – the UAV A making the deconfliction manoeuver, the action
d(B) – the UAV B making the deconfliction manoeuver and d(A,B) – the both UAVs making the
deconfliction manoeuver. As the UAVs are different, they loss of their individual utility associated
with the manoeuver is different. Let us assume:

– mud(A)(A) > mud(B)(B) > mud(A,B)(B) + mud(A,B)(A)
– mud(A,B)(A) > mud(A)(A),
– mud(A,B)(B) > mud(B)(B)

7 Note that 0 represents here u(aB
A , ...) expression from the definition 2.3 as the marginal utility doesn’t

change without any action of agent A
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The A UAV is smaller than the B UAV, which implies that it is cheaper for A to make the
manoeuver than it is for B. However B making the manoeuver is even cheaper than sum of costs for
both UAVs making the manoeuver. However, for each UAV it is cheaper to participate in a collective
manoeuver than doing the manoeuver individually.

In the cooperative environment the UAVs with conflicting plans do minimize overall disruption
and fuel consumption while solving deconfliction problems8:

– A,B : d(A) � d(B) � d(A,B) � ¬d(A,B)

Both the cooperative UAVs have the same strategy, that is the smaller UAV deconfliction is
preferred to the bigger UAV deconfliction that is preferred to both plans deconfliction and which is
preferred to a confliction.

In the competitive environment each UAV minimizes its own plan disruption and fuel consump-
tion, but conserves overall welfare:

– A : d(B) � d(A) � d(A,B) � ¬d(A,B)
– B : d(A) � d(B) � d(A,B) � ¬d(A,B)

More specifically, if two UAVs would collide and only one evasive maneuver is necessary, it will
try to make the other UAV divert from its course, but without compromising the security.

In the self-interested environment each UAV minimizes its own plan disruption and fuel con-
sumption, regardless of the others.

– A : d(B) � d(A,B) � d(A) � ¬d(A,B)
– B : d(A) � d(A,B) � d(B) � ¬d(A,B)

In case of conflict, it only diverts from its course to protect its own safety.
In the adversarial environment the adversarial UAV causes a significant disruption of the other’s

plans, or even endangers them. Let us assume mud(A)(A) � mud(B)(B) (e.g. A is pushing B away).

– A : d(B) � ¬d(A,B) � {d(A,B), d(A)}
– B : d(A) � d(A,B) � d(B) � ¬d(A,B)

If the B flying over an enemy area does not want to be pushed, the situation is as follows:

– A : d(B) � ¬d(A,B) � {d(A,B), d(A)}
– B : d(A) � d(A,B) � ¬d(A,B) � d(B)

2.4 Conclusions

The problem of adversariality in the multi-agent systems is real. While the irrationally adversarial
agents may be easy to identify, it may be much more difficult to identify the rationally adversarial
behavior, especially if all the agents in the system are self-interested. In this context, the question of
bounded rationality of agent’s reasoning is crucial. For example, some agents may be willing to leave
the local optimum to bring the system into the globally optimal (or simply better) state. However,
if the other agents in the system lack this insight, they may consider this behavior as adversarial
because they fail to see the long-term benefits.

To better illustrate the concept, we will list several accepted causes for the emergence of the
conflict between the rational actors. It is easy to realize that most of these causes can plausibly exist
in the multi-agent system and shall be considered while designing autonomous agents:

This can happen due to the fact that private information of each agent is not available to the
others. This provides one of the causes of miscalculation about capabilities or attitudes of the other
8 The symbol � stands for collective choice preference
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party. Such miscalculation may cause an adversarial behavior, as the agents will not be able to
correctly estimate the utility function of the partners. Similarly the agents are often willing to
misrepresent the reality about themselves, in order to obtain better payoff or negotiation position in
the future. However, if such behavior becomes widespread in the system (It can be often prevented
by careful mechanism design.), agents are unable to communicate efficiently. In more sophisticated
extension of this behavior, agents can behave strategically and harm the others to gain higher relative
power in the long term. In some situations, the system may even become purely competitive – agents
or their groups have nothing to gain from cooperation, for example when the payoff is indivisible.

The definition of the adversarial behavior that we present provides a useful complement of the
current approaches to the open systems engineering. Even if the system is based on carefully designed
mechanisms and/or norms, the changing system social structure and the environment or agent’s
strategic behavior may modify the system and make it inefficient or dysfunctional. To counter such
danger, the agents in the system shall continuously monitor the behavior of the others and their own
and detect potentially adversarial actions. In the context of our work, we have implemented a trust
model described in Chapter 5 that integrates seamlessly with agent reasoning, is robust with respect
to significant environment noise and helps the agents to avoid the collaboration with untrustworthy
partners.

Apart from using the model of adversarial behavior for construction of the trust models of the
individual agents about the other agents, we see another level of the exploitation potential on the
level of agent infrastructure. Multi-agent systems integrations the meta-level components for policy
management and adjustable autonomy [64] can make use of the adversariality models for dynamically
changing the policies but also for creating norms – this is a valid option for future research, as such
approach promises higher efficiency and can be a good fit for high-performance applications like
networking.
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3

Inaccessible Environment and its Properties

3.1 Measuring Inaccessibility

An important problem is how to quantify inaccessibility in multi-agent systems. In the following we
discuss several metrics of inaccessibility that we have been using throughout our research project1.

Let us introduce a measure of inaccessibility, a quantity denoted as ϑ ∈ [0; 1]. This measure
is supposed to be dual to the measure of accessibility – ϑ ∈ [0; 1], where ϑ + ϑ = 1. We will
want ϑ to be 1 in order to denote complete accessibility and ϑ to be 0 in order to denote complete
inaccessibility. This measure is consistent with the circuit reliability defined in [30]. In the following
text we will mostly describe the agents’ accessibility while the inaccessibility is its complement.

3.1.1 Agent-to-Agent Accessibility

In this section we will use the random graph theory [11] in order to describe some general properties
of inaccessibility in multi-agent systems. Random graph theory has been recently successfully used
for theoretical studies of complex networks [2].

In this context, we represent the multi-agent community as a graph. The agents are represented
by nodes and available communication links – connections where the information exchange is possible
– by edges. Unlike in the general case of agents inaccessibility, the random graphs theory works with
an assumption that all edges are present with the same probability p. In our domain, this probability
is represented by link accessibility: p = ϑ.

The ϑ link accessibility can be determined in two ways. Firstly as ϑt:

ϑt =
tacc

tinacc + tacc
, (3.1)

where tacc denotes the amount of time when communication is possible while tinacc denotes time
when agents are disconnected.

Similarly, we may measure accessibility as a function of communication requests (ϑm):

ϑm =
|m| − |mfail|

|m|
, (3.2)

where |m| denotes the total number of messages sent and |mfail| the number of messages that failed
to be delivered. In the following we will discuss ϑt while most conclusions apply equally to ϑm. The
accessibility measure ϑt is symmetrical between entities A and B

ϑt(A,B) = ϑt(B,A), (3.3)
1 Definition of accessibility was already part of the deliverable [49].
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while the accessibility measure ϑm is not necessarily symmetrical.
In our model, ϑt accessibility depends on the environment agent positions only, while ϑm acces-

sibility depends also on other factors, like communication link load or social knowledge availability
of the agents.

We have counted the probability of existence of the path between two agents - path accessibility
- depending on link accessibility in simple mathematical simulation. The result is shown in figure 3.1.
Classical result of the random graph theory is that there exists a critical probability at which large
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Fig. 3.1. The dependency of path accessibility (probability of existence path between two agents) on link
accessibility. This graph is the same for the link accessibility with or without the symmetry.

cluster appears. In our domain, we assume that there is a critical accessibility – ϑc such that below
ϑc the agent community is composed of several isolated groups but above ϑc most of agents become
mutually path-accessible (using relay agents). The ϑc value is represented by the quick growth in the
figure 3.1. This observation is similar to a percolation transition known in the field of mathematics
and statistical mechanics [68]. In the field of multi-agent systems, it means that the relay agents are
more efficient than isolated stand-in agents for link accessibility bigger than ϑc. Our testing scenario,
presented in section 6.2.3 and implemented using actual multi-agent system based on A-globe [66]
allows to set up and verify properties of both cases.

3.1.2 Accessibility Characteristics

Second relevant result of random graph theory is the average length l∗ of a path between any two
vertices and the diameter ld of a graph (i.e. maximal distance between any two nodes). It holds [2]:

l∗ ∼ ld =
ln(n)

ln(ϑtn)
,

where n is number of agents.
In our domain, the length of the path says how many relays must be used in order to convey a

message between the agents A and B.
Below we summarize several important results:
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ϑtn < 1 ⇒ the network is typically composed of isolated trees. The diam-
eter is equal to the diameter of trees.

(3.4)

ϑtn > 1 ⇒ a large cluster is formed. The diameter is equal to the largest

cluster diameter and if ϑtn > 3.5 it is proportional to
ln(n)

ln(ϑtn)
.

(3.5)

ϑtn > ln(n) ⇒ the graph is probably totally connected and the diameter is

very close to
ln(n)

ln(ϑtn)
.

(3.6)

These properties are well observable also in our domain (see section 3.2.2).

3.1.3 Accessibility Temporal Characteristics

Agent cooperation, as discussed for example in [34] typically requires that all cooperating agents
know about the properties and existence of each other (awareness) and that they are able to commu-
nicate (explicitly or implicitly) in order to coordinate their actions. In the distributed and potentially
inaccessible coordination cases, we call these properties remote awareness and remote presence.

When an agent builds remote awareness, it tries to let the remote agents include knowledge of
its existence and all relevant information into their social knowledge and to let them operate using
this information. This process may be implemented using pull or push information retrieval oper-
ations. Typical examples are acquaintance models described in section 6.1.3, matchmaking middle
agents (6.1.2) or synchronization and search in peer-to-peer networks [24].

When an agent builds a remote presence, it does so to operate actively in the remote location.
As a collateral effect of this action, agent may also build a remote awareness - as in the stand-in
case, but this does not necessarily apply when we use middle agents. Examples of this approach are
relaying (6.1.1), stand-ins (6.1.4) or broker middle agents (6.1.2).

In a perfectly accessible environment, communication between cooperating agents is unrestricted
and therefore the exchange of knowledge, as well as negotiations and commitments are unlimited,
making remote awareness and presence perfect. With increasing communication inaccessibility, co-
operation quality decreases and the only way to maintain it is to use special techniques for remote
awareness and remote presence maintenance.

Therefore, besides the simple accessibility ratio defined above, we shall also analyze relevant
temporal accessibility properties. These properties are crucial especially for establishment of remote
presence, as most interactions between agents require a sequence of messages to be exchanged fol-
lowing a predefined protocol. If such sequence is broken and some messages are lost, the mutual
knowledge about the commitments can not be guaranteed and cooperation may fail. As the loss of
communication is not always perceived by both partners, the non-fulfilment of an expected action
can harm the reputation of executing parties, with all possibly damaging consequences. This is why
the time of accessibility - length of the time interval, during which are the entities accessible, can
seriously influence the system performance.

To develop our theory, we use a formalism analogous to well known MTBF relations from relia-
bility theory [44] and therefore the mathematical aparatus developed for this theory applies in our
case also.

Formally, we may describe the accessibility between two entities by two values - mean time of
accessibility, denoted τϑ and mean time of inaccessibility, denoted τϑ. The relation between
the accessibility defined above and these values is an obvious one:

ϑt(A,B) =
τϑ(A,B)

τϑ(A,B) + τϑ(A,B)
(3.7)

In the following section, we are going to describe the existing solutions for inaccessibility problem
and analyze their use in domains characterized by the defined metrics. The formalism presented in
this paragraph will be revisited in paragraph 6.1.5.
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3.2 Measure of Accessibility - Experiments

In this section, we will describe a set of accessibility experiments with a multi-agent simulation.
The goal of the experiment was to validate the relevance of the theory presented in the first part
(section 3.1) of this chapter on a real multi-agent system. In the same set of experiments, we have
also established the boundaries of applicability of various solutions for inaccessibility, as discussed
in Chapter 6.

3.2.1 Testing Scenario

For our measurements, we have generated a graph with 10 static nodes placed in 2D space and
7 nodes moving among the static nodes. The link accessibility represents a limited-range radio
communication.

The graphs were generated from 11 sets of measurements, each with different communication
range that defines the inaccessibility within the system.

3.2.2 Results
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Fig. 3.2. Left: The dependency of path accessibility on link accessibility in our test scenario. The dot lines
show average deviation of values. The gray thin line shows theoretical value for random graph with 10 nodes
(see fig. 3.1). Right: The dependency of link and path accessibility on communication radius.

On figure 3.2, we can identify three major states of the community from the accessibility point
of view, as defined in section 3.1.2. At first, before the communication radius reaches 60, static
community members are isolated and information is not transmitted (see Eqn. 3.4), but only carried
by moving entities. In this state, path accessibility is not significantly different from link accessibility.
Therefore, probability of relaying is almost negligible.

Then, with increasing communication radius, larger connected components do start to appear,
covering several static and mobile entities and allowing the use of relaying over these portions of the
graph. This phase appears around the percolation threshold, that can be observed above radius of
80, corresponding with link accessibility of 0.2. This state is characterized by important variability
of connected components. Due to the dynamic nature of our system, these components are relatively
short-lived, resulting in a high variability of the system, as we can see on figure 3.3. Path accessibility
in the community may be described by relation 3.5

In the last state, when communication radius is above 120 and link accessibility reaches 0.4, the
entities become almost completely connected. We say that accessibility is achievable, as defined
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above. This state of the community is described by relation 3.6. System properties does not change
when we further increase the radius and link accessibility.

The dynamic nature of our network near percolation threshold is clearly visible on the following
graph (figure 3.3), where we present the number of locations visible from one randomly chosen
entity of each location type over a period of time. As we are near the percolation threshold, in the
state described by Equation 3.5, we can observe the appearance of relatively large, but short lived,
accessible components.
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Fig. 3.3. Number of visible entities for different types of entities in our scenario, for communication radius
of 80, near percolation threshold.

In the figure 3.3, we may also note that the transport is accessible from significantly more
locations than static elements. As this holds for all transports in our scenario, a parallel with scale-
free networks [8] arises. In these networks, a small number of nodes called hubs has significantly
more connections with others than the rest, while in the random networks most nodes have the same
number of adjacent edges. In this respect, transport platforms with stand-ins on them serve as hubs
of our system, spreading the information as they roam through the map. This hypothesis is validated
by the subsequent experiments on the identical domain, presented in Chapter 6. This chapter also
introduces and evaluates the concepts that help us to manage and solve the inaccessibility.

To summarize the findings, the experiments as they are presented prove that the random-graph
theory with other elements from mathematical network theory is a correct formalism for inaccessi-
bility modelling in mobile distributed agent systems.
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4

Modelling Inaccessibility and Adversarial Behavior

In order to experiment with and demonstrate the investigated research concepts, we need an envi-
ronment that supports modelling communication inaccessibility and modelling adversarial behavior.
We have designed and developed the generic ACROSS scenario deployed within the A-globe plat-
form. This generic scenario is agent-based and very flexible – we can augment the baseline version
(Section 4.1) to support inaccessibility (Section 4.2), adversarial behavior (Section 4.3) or even to
simulate disasters that can be solved by cooperating humanitarian agents, as described in Section 4.4.

During the course of the project, the scenario development objectives were frequently re-aligned
with the needs of the research. On the other hand, the agents in the scenario were being enriched
by the new capabilities stemming from the research results, and their final version is a core of the
prototype presented in Section 4.4. This double influence has enabled us to orient the research
towards plausible, real-world-like problems and to propose efficient solutions to these problems.

4.1 Domain Description – ACROSS

We have designed a specific scenario simulating logistics humanitarian aid provisioning. In our sce-
nario, figure 4.1, we solve a logistics problem in a non-collaborative environment with self-interested
agents. Agents that are part of the scenario have no common goals and their cooperation is typically
financially motivated.

We have three types of information about each agent [51]. Public information is available to all
agents in the system. It includes the agent identity, services proposed to other agents and other
relevant characteristics it wishes to reveal. Semi-private information is the information which the
agent agrees to share with selected partners in order to streamline their cooperation. In our case,
resource capacity cumulated by resource type is shared within transporters’ alliances (see below).
Private information is available only to agent itself. It contains detailed information about agent’s
plans, intentions and resources.

Following types of agents participate in the scenario as actors:

Location Agents: Location agents represent population and natural resources, figure 4.2 (a). They
create, transform or consume resources. As most location agents are unable to completely cover
the local demand, they acquire the surplus goods from other locations through one round, sealed
bid auctions organized by buyers according to the FIPA CNP protocol [27]. As most Location
agents are physically remote, it is necessary to transport the acquired goods from the provider
to the buyer. In order to do so, location agents contract ad-hoc coalitions of transporter agents
to carry the cargo, figure 4.3.

Transporter Agents: Transporter Agents are the principal agents in our scenario. They use their
resources - vehicles, driven by Driver agents - to transport the cargo as requested by location
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Fig. 4.1. ACROSS scenario. The geography of the island is modelled after the real Java island in Indonesia,
with necessary simplifications.

Fig. 4.2. (a) – Location and 3 Transporter agents in a village container; (b) – a Driver agent in a car
container

agents. As a normal request exceeds the size that may be handled by a single transporter, trans-
porters must form one-time coalitions in order to increase the coverage and thus to be chosen
in the auctions. All transporter agents are self-interested and they don’t wish to cooperate with
all other transporters. They only pick the partners that are compatible with their private pref-
erences. The compatibility is checked using the public information available about the potential
partner and agents’ private preferences.
While answering the calls for proposals, the agents must form the coalitions relatively fast and
efficiently to submit their bid before timeout elapses. Therefore, they use the concept of alliances,
discussed in [51], to make the process more efficient. Alliances are groups of agents who agree
to exchange the semi-private information about their resources in order to allow efficient pre-
planning before starting the coalition negotiation itself. Using the preplanning, negotiation can
directly concentrate on optimization issues, rather than starting from resource query, saving
valuable time and messages.

Driver Agents: Driver Agents drive the vehicles owned by Transporter agents, figure 4.2 (b). They
handle path planning, loading, unloading and other driver duties.
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Fig. 4.3. Location agents contract ad-hoc coalitions of transporter agents to carry the cargo

Numbers of agents actually used can vary from project to project, but the basic configuration
uses 25 Location agents, each of them in separate container, 25 Transporter Agents distributed
among Location agents’ containers and 65 Driver Agents, each with its own container. Besides these
”active” agents, we do need several services per container to implement platform functions like GIS,
directory or migration management. With latest optimizations, this configuration runs on a single
PC, greatly facilitating the experiments.

A-globe has been used also for experiments within the underwater surveillance domain. Here
a collective coordination and planning of a group of autonomous robots have been investigated.
Deployment of A-globe in this scenario has been supported by N00014-03-1-0292 project funded by
ONR. As this exercise has been of purely collaborative nature, we can hardly us it as background
for addressability modelling

4.2 Modelling Communication Inaccessibility

Besides the agents mentioned above, several other agents are used for world simulation purposes, as
described in A.2. ACROSS scenario is managed by the following agents:

NodePod Agent simulates the positions and movements of all agent containers (see A.1) in the
simulated world. ACROSS world containers are positioned in the graph. Location agents are placed
in a selected node, while the vehicle containers move through the graph following the edges - roads.
For each moveable container, at least one agent in this container must be able to communicate
the decisions about future directions to the NodePod agent and to handle events generated by the
NodePod upon arrival to the graph node. NodePod doesn’t take any part in road planning or decision
making - it plainly simulates the movements of agent container support on the map following the
orders from the Driver agents.

For large scale scenarios, we prefer to handle the movements of agents in a central simulation
element, rather than in the container itself. This approach, even if slightly less flexible while adding
new agents, pays off thanks to the important savings in the number of messages necessary to run the
simulation. In most cases, we require the movements to be smooth, requiring at least 10 simulation
steps per second. If the movements are managed in a distributed manner, the system would require
600 messages per second just to report the positions of containers. Besides the sheer number of
messages, we must take into account the fact that many simulation agents require the knowledge
of all agent’s position in order to generate their output (for example accessibility). Synchronization
then becomes an important issue.
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Besides the communication with driver agents, the NodePod agent also provides the updated
positions of all containers to all other simulation agents in the master container, especially to the
Visibility Agent.

Accessibility Agent is an ES agent that simulates the accessibility between the agent contain-
ers. It uses the position data received from NodePod ES agent to determine the distance, updates
the data with stochastic link failures specified by the configuration parameter and sends the updates
to the containers whose accessibility has changed.

We shall note that the two types of inaccessibility - distance based or caused by the link failures
- have very different effects on the processes in the community. In the first case, agents who are
inaccessible cannot start any direct interaction and this translates into the suboptimal performance
of the system, according to the standard economic theories. On the other hand, if the inaccessibility
is stochastic, the interactions can indeed start, but the actors must be aware of the possibility that
the link can be broken at any time. Therefore, the agents must adopt an appropriate method for
inaccessibility resolution, such as use of stand-ins (see [61]), social knowledge or adopted interaction
protocols.

Weather Agent maintains the model of the weather in the various parts of the environment.
The weather is generated once per each simulation day and submitted to all Location containers. It
is then used to adjust the production or consumption of various resources.

Two additional modules are currently integrated with NodePod agent. The 3D visualizer mod-
ule ensures the selection and formatting of the data for the external visualizers. Besides the pure
position data, this module receives the status messages from agents and displays them in the ap-
propriate visualizers. Due to the important data flow between this module and external visualizers,
we were forced to implement an efficient binary protocol for message sending. The time module
controls the speed at which the simulation runs. It maps the real time to physical simulation step,
therefore influencing the basic pace at which the system runs. Besides this fundamental parameter,
we can modify the second parameter, that maps the simulation step to simulation day, used to
trigger the recurrent agents’ actions, such as production or commercial exchanges.

Fig. 4.4. The commercial visualizer GUI

Commercial Visualizer agent visualizes the auctions, including all bids and selected winners,
together with the coalitions of transporters that handle the transportation, as shown in figure 4.4.
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It also presents the alliances and their formation described above. In contrast to Sniffer or Com-
munication analyzer agents, this agent is scenario dependent. This makes its integration with other
scenarios non-trivial, but the specificity makes the presentation efficient and understandable.

In order to obtain the adversarial behavior, the core of the system described above must be
enriched with specific components and behavior. These modifications are specific for this project
only.

4.3 Modelling Adversarial Actions

In this section, we will present the enhancements of the above generic scenario that are used to
implement defection and adversarial actions in the ACROSS . We will also discuss the details of
the mechanisms used for coalition evaluation and payoff distribution and emphasize their crucial
aspects. The system as described by the previous and this section was used to obtain the results
presented in section 6.2.3, where we evaluate the trust model presented in Chapter 5.

Fig. 4.5. The bandit agent action as shown in the 3D visio

One significant change compared to nominal across scenario is an introduction of bandit agents,
a special type of ES agents (see A.2), who simulate the attacks on the vehicles during their movements
between different locations and rob them of their cargo or part of thereof, see figure 4.5. Under
normal circumstances, bandits attack stochastically with probability pn(LocalHappiness) and they
are rarely successful. Likelihood of natural bandit attack in a given region is non-decreasing with the
increasing suffering of the population - we suppose that poverty increases crime rate. This mechanism
is one of the driving forces of the adversariality evolution presented in the next section.

Besides nominal random attacks with a relatively low probability pn, the bandit attacks can be
more successful in case of defection of one or more agents in the coalition that transports the cargo.
Uniform probability pd(LocalHappiness,#ofdefectors) is non-decreasing with local happiness and
increasing with number of defectors in the coalition. Typically, a relation pd � pn holds, with
the ratios fixed by experiment configuration. Besides the side payment from the bandits, a single
defector in a coalition obtains an immunity for its cars. If more than one agent defects, no one has an
immunity. Technically, defection means informing the bandit about the coalition goals, participating
agent and plan - data that is accessible to all members.

When the cargo is lost during the transport, the payments to all coalition members are reduced, as
the coalition is payed only for the completed deliveries. The losses are shared between the members.
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Transporters are therefore motivated not to cooperate with defectors or frauds and they use the
above described reasoning to select their coalition partners.

The problem we solve is analogous to iterated prisoners dilemma (with more than two players)
with significant background noise, produced by the following phenomena: (i) The attack probability
depends on the length of the transport path and the speed of the car - this fact was intentionally
omitted in the trust reasoning experiments (see 6.2.3). (ii) The success of the cooperation (see 5.4.1)
is determined by the ratio of the delivered cargo - and each vehicle has different capacity and load.
Therefore, a single attack on a fully loaded car can have greater impact than many attacks on the
cars with small lots. (iii) The drivers working for the defector are protected. In the very special case
when they carry a bulk of the coalitions’ cargo, defection may actually increase the success of the
coalition.

In the last scenario version, trustfulness values are accessible in the 3D visualizer as soon as
enough data is available to evaluating agent. This information is accessible be clicking the Trans-
porter Agent name in the visualizer. Then, the color-coded list with the names of other transporters
and defuzzyfied trust values appears and when the cursor is dragged over the column heading or
individual partner, a line in matching color appears between the evaluator and evaluated agent.

4.4 Scenario Evolution: Humanitarian Relief Operation in Adversarial
Environment

This section describes the extensions that enhance the existing ACROSS scenario, as described in the
previous sections. To study complex coordination and cooperation in such environment, we disrupt
the equilibrium of economy on the simulated island by introducing a catastrophe that inhibits the
creation of resources necessary for population survival in one part of the island. In this evolution
of the domain, existing agents are modified to fit following scenario and new types of agents are
introduced (besides bandit agent that is also used for the trust experiments in Chapter 5). After the
catastrophe, Humanitarian agents described in the suite are introduced to the disrupted environment
to fill the gap and to provide the missing resources.

As a result of the catastrophe introduced above and managed by dedicated ES agent, one part
of the island will severely lack some of the necessary goods, for example water and grain in case of
drought.

4.4.1 Inaccessibility and Communication Failures

Intuitively, we assume that the catastrophe affects the communication infrastructure in the disaster-
affected area - see Figure 4.6. Therefore, the Humanitarian agents will deploy their stand-ins as
described above to obtain the information about the needs of the population. Moreover, stand-ins
will be used also to coordinate the actions between Humanitarian agents and to convey the planning,
trust and reputation information in order to increase the overall help efficiency. To satisfy this goal,
the trust model will be integrated with Humanitarian agent’s social model and the appropriate
subset of the model will be synchronized with stand-ins representing this agent. These agents will
provide the others with the necessary information or make commitments on owner agent behalf.

4.4.2 Humanitarian Agents

Humanitarian agent is a special type of agent representing humanitarian relief organization.
Normally, it is activated outside of the disaster area when the catastrophe strikes.

These agents use their own stock of resources to provide missing resources for the disaster area,
compensating the disabled local production. However, to complete this task, they must collaborate
with Transporter Agents to deliver the needed goods. Unlike the Location Agents, they don’t content
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Fig. 4.6. Disaster affects the accessibility in the disaster area (West).

themselves to acquire the transport from the ad-hoc coalition formed by transporters – they perform
the coalition leader role themselves, in order to exercise better control over the individual transporters
and also to reduce the risk and improve the efficiency using the trust-based planning as described
in Section 7.3.

Furthermore, as we suppose that most communication lines are out of order in the disaster area,
Humanitarian agents must deploy stand-ins (see Chapter 6.1.4) near the locations requesting help
to receive orders and to transmit them to their respective humanitarian agents. Stand-ins are also
in charge of the surveillance of the aid delivery - they account how much aid was really delivered to
the intended locations and inform their owners about the result.

Humanitarian stand-in is the stand-in agent deployed by the humanitarian agent in the dis-
aster area in order to obtain the information about the needs and results of the operations that
are unobservable by the Humanitarian Agent itself. At first, once the disaster is detected by the
humanitarian agent, the stand-ins are deployed to the disaster area through path-accessible Loca-
tion containers, as well as through Vehicle containers (see Figure 4.7). Once deployed, the stand-ins
register with local directory service agent as Location agents, so that the Location agents that are
in their vicinity can include them into their request queries. Each query that the stand-in is able to
cover is passed to the owner, Humanitarian agent, through the synchronization techniques described
in Section 6.1.4.

The second role of the stand-in agent is to observe the deliveries of the cargo as it was planned
and contracted by Humanitarian agent. To do so, they receive the information about the tasks
to observe once the tasks are assigned to individual coalition members and these members have
committed to them. Using this information, stand-ins subscribe with the accessible target locations
of the relevant cargo batches to receive the notification when the batch (or its part) is delivered. This
information is aggregated and passed to other stand-ins, further aggregated and finally it reaches
the Humanitarian agent, where it is used for re-planning and trust model update.

Humanitarian stand-in is a domain-dependent example of inaccessibility solution. It is efficient,
can adapt to diverse and dynamic accessibility states in the environment and can communicate with
Local agents to gather valuable knowledge. Its main advantage in the adversarial environment is the
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fact that it can be trusted by its owner1 – this is a necessary prerequisite, as it uses highly sensitive
information about specific task assignments to report their status to the owner.

Fig. 4.7. Humanitarian agent stand-ins are deployed in the disaster area, both on vehicles and in location
containers.

Transporter Agent Modification

The original Transporter Agent is extended in the scenario in order to be able to cooperate with
Humanitarian Agents and to work reliably in the inaccessible and adversarial environment. We have
introduced several modifications:

– Ability to act as a coalition member in the mechanism described in Section 7.3 – note that this
doesn’t include any mathematical programming ability, but simply own resource allocation and
team-wide negotiation.

– Ability to react to events encountered by drivers in inaccessible areas: this feature is implemented
by placing Transporter Stand-In Agents on all own vehicles to handle these events instead
of inaccessible transporter agent and to notify the owner directly or through peers as soon as
possible/necessary (see Figure 4.8). This approach is preferable to simple Driver agent modifi-
cation as it allows us to separate the researched mechanism (stand-in operating in inaccessible
environment with sparse mobile nodes) from the simulation code in the Driver Agent. It shall
be noted that the characteristics of the Transporter stand-in network are different from the one
formed by humanitarian agent stand-ins - the transporter stand-ins are deployed on much smaller
number of nodes and will not be able to ensure path accessibility between nodes in most cases.

Furthermore, the Driver agent and Location agents were also subject to minor modifications in
order to integrate with new or updated agents.

4.4.3 Simulation Agents

In order to simulate the disaster in a realistic manner, we are forced to introduce new functionality
into the simulation agents. Instead of creating an additional, specialized agent, we have opted for
1 In practice, it can be trusted to the extent to which the owner trusts the platform it runs on.
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Fig. 4.8. Transporter Agents deploy their stand-ins on their own vehicles only.

the evolution of two existing agent - the Weather agent and the Accessibility agent to achieve the
same effect more efficiently.

Weather Agent in its original form provides the weather information that influences the out-
put of production of several commodities, while the others are mere transformations of the primary
products. Therefore, when we want to simulate the shortage of goods, the Weather agent is a natural
place for the functionality. Each disaster is described by following data: StartTime, EndTime, Area
Affected (list of locations) and finally a production reduction coefficient for each affected commod-
ity. Simulated disasters are pre-configured and loaded from configuration file to ensure uniformity
between several runs of the same experiment. Each disaster also triggers a topic broadcasted within
the master container, that is captured and handled by Accessibility Agent.

Accessibility Agent Evolution is necessary both to simulate the local accessibility faults in
a disaster area and the part of the functionality is also necessary to support the experiments with
stand-in network adaptation as described in Section 6.2.3. The new functionality, shown in Figure 4.9
includes:

– Local accessibility changes, when the affected area is defined by configuration file and can vary
between runs if necessary.

– Handling of the disaster message from weather agent and reducing the accessibility in the affected
region.

4.5 Conclusion

Development of the ACROSS scenario has enabled us to study large-scale distributed multi-agent
systems with minimal cost. It has been enabled by the high efficiency of the A-globe platform,
that was further optimized in the course of this project. Currently, as we are still relying on this
scenario to gather experimental results, we intend to use A-globe to support even more realistic
operations and progressively increase their complexity to study more real-world phenomena. This
approach allows us to verify the validity of many assumptions that are currently taken as granted
in multi-agent research and address potential scalability problems that may become obstacles for
system deployment.
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Fig. 4.9. Accessibility agent manages the accessibility to reflect the disaster occurrence, causing inaccessi-
bility within disaster area. Stand-in agents are tested in this environment to ensure knowledge transfer.

5

Using Trust for Coalition Formation in Adversarial
Environment

In adversarial environments, agents need a model representing their relationships with other agents,
including the measure of adversariality. One of the approximations of this measures is trust, discussed
in this chapter.

The problem of trust in multi-agent systems is already a relatively well defined one, with many
important contributions in the area. However, there are many approaches to trust representation,
using different scales and various decision and learning algorithms. In this chapter, we are going to
analyze the existing formalisms of the trust representation and propose their extension with explicit
uncertainty representation using fuzzy numbers and fuzzy set theory.

To differ form the current work in the domain, we have decided to devise a model with features
that are crucial for embedded applications with minimum or no human control. Therefore:

– we don’t concentrate our attention on a simple client-provider relationship, but we examine a
more general coalition case in which the potential coalition members must select their partners
carefully, as the failure of any partner in the coalition influences the payoff of all members.
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– We have concentrated our study on general, not situational trust, as the autonomous devices
provide specialized services in most cases. On the other hand, our experiments in the last chapters
show that the situational trust can benefit even such devices, and remains in the scope of our
future work.

– Autonomous adaptation to previously unknown failure rate in the environment makes the model
robust and minimizes the human manipulation necessary beforehand, as well as the amount of
the information necessary.

– Model is robust with respect to significant environmental noise, as shown in experiments below.
– Model is computationally efficient and lightweight. Knowledge is updated iteratively and neces-

sities only several bytes of storage per each evaluated agent.

5.1 State of the art

Existing literature on trust in MAS is abundant. Basic definitions and terms seem to be well defined
by works of Marsh [43] and Castelfranchi et al. [16]. Marsh defines the general trust - trust in
an agent as an individual, as: ”Agent x expects that y will behave according to xs best interests,
and will not attempt to harm x”. This is the definition we have chosen for the current version of
the formalism and the set Θ, defined in section 5.4 is defined accordingly. Castelfranchi provides
an important distinction between trust as a mental state, measure of agent’s trustfulness and the
trust as a decision to delegate (or more precisely to cooperate, when the delegation is replaced by
cooperation) where the mutual trust between each pair of agents in the coalition is necessary.

The trust learning has been well explored by Andreas Birk et al.[10], T. D. Huynh et al. [38] and
others. Very good formal model has been recently contributed by S.D. Ramchurn et al.[59].

Use of the trust for partner selections has been analyzed by Marsh [43], T. Dong Huynh et al
[38] and others [32].

Considering the trust as a mental state, we have several options how to represent it. The first
option available is a simple binary value - agent is either trusted or not. This option makes a trusting
decision very easy, but comes with a price of low information content and no option to store the
previous interaction history. Typically, the use of this trust representation corresponds with tit-for-
tat strategy [6] from the iterated prisoners dilemma. In the real life, this strategy also suffers from
the difficulties in deciding whether a result of previous action was a success or not. In many real
environments there may not be a simple binary answer, as the environment and context influence
the results of all agents’ actions and the definition of success itself may be ambiguous.

We may improve this simplistic binary approach by using a real number value for the trust,
typically from the interval [0, 1] or [−1, 1]. This approach has been used by most researchers so far.

The issue of the interval used for the trust value is not crucial, as a bijection exists and simple
techniques allow us to map the representation in one interval to another. However, in reality, this
issue influences the use of the trust values in agents decision making process. When we use the interval
[0, 1], the probability analogy comes into the play naturally. The probability interpretation makes
the use of the trust quite straightforward, using the game or decision theory reasoning processes
about expected utility. In the same way, it simplifies the learning process, as the ratio of expected
and achieved utility in previous interactions with the trusted agent provides the trustor with an easy
trust estimation.

The other approach, using the interval [−1, 1] emphasizes the cognitive aspects of the trust −1
means that the agent is completely distrusted, value 1 means completely trusted agent. Appropriate
methods, for example Fuzzy cognitive maps [17], known from the expert systems field, are appropriate
for handling of the trust and can partially or completely solve the problems, caused by naive trust
use, that were identified by Marsh [43].

However, both approaches suffer from one fundamental flaw - it is very difficult to distinguish
between the ignorance and unpredictable behavior. The fact that both cases are typically represented
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by values around 0.5 or 0 in respective cases makes the meaningful use of the central part of the scale
quite challenging. Moreover, the fact that the uncertainty is represented by a specific value or range
makes difficult the adaptation to the environments with various levels of noise in the communication
or action results. Informally, the trustfulness considered as low in one environment may be found
sufficient in different context.

Furthermore, in much of the previous work the trust between two partners with well defined
client and supplier roles was examined. In our experiments, we focus on the issues of trust in peer-
to-peer coalition cooperation, when the failure of cooperation may be attributed to the fault of one
or more coalition partners, or to the environment effects (noise).

Therefore, we argue that the existing formalisms for the representation of the trust are insufficient,
as we still confound uncertainty and the level of trust itself. For us, trust is not a single value, but
rather a complex mental state that includes the uncertainty.

We were partially inspired by the work of Ramchurn et al.[59], where a fuzzy set based approach
to trust categories is already proposed, even if the value representing the trust is still crisp. In our
work, we further extend the approach with the mathematical apparatus known from the field of
fuzzy set theory [54] and fuzzy control [22] by the introducing the fuzzy numbers.

But before we specify the representation we use, we shall present the criteria that has led us
towards the selection of this concept.

5.2 Requirements on Trust Representation

We propose to enrich the existing trust representations presented in the previous section with un-
certainty. This is not an easy task, as the resulting formalism will be undoubtedly more complex
than simple real values and we shall be able to select a well adopted formalism from a vast choice
available - the possibilities range from probability distributions on one side to possibility theory and
Dempster-Shafter on the other. To make a well adopted choice, we propose following requirements
for the trust representation formalism:

– Trust in agents shall be comparable - trustfulness functions shall form a lattice.
– Trust in agents shall be comparable with intuitively predefined threshold. The signification of

this threshold shall be understandable and the threshold must be easy to define.
– The signification of trustfulness value shall be understandable.
– We shall be able to deduce the trustfulness of the group of agents from the trustfulness of

individuals in the group. At first, we may ease this requirement by assuming that the trustfulness
of an individual is not influenced by other members of the group.

– Trust shall be dynamic and adaptive. It shall be possible to derive it from previous interactions.
– The trust learning process shall be iterative and reasonably fast and lightweight.
– Besides learning, agents shall be able to include arbitrary beliefs about other agents into the

trust.
– Trust shall support the integration of reputation information as received from other. It must be

usable as a source for the reputation information provided to others.
– Membership in social structures (coalitions, alliances) shall be expressed by the same or similar

formalism. It shall be able to define a relation between trust and the membership values.
– Extension towards situational trust shall be possible in the future. This means including more

inputs, besides apriori general trust and storing rules determining the agent’s behavior in different
situations.

– Learning of these rules shall be possible, with or without background knowledge.

Using the criteria presented above, we have selected the fuzzy numbers approach. We have not
opted for the used of probabilistic methods due to their relative heavy weightiness. We have also
considered that the very strict rules of statistic decision can make the passage towards the situational
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trust difficult as the usefulness of the approach decreases with increasing number of dimensions in the
problem. On the other hand, we felt that the possibility theory based approach is not sufficient, as
it fails to provide a single significant value representing the trust - a crucial feature for comparisons
and easy understanding.

The fuzzy number approach provides a well balanced compromise between the information con-
tent and the ease of use, as was already proved in the booming field of the fuzzy control. On of the
important factors in our decision was the fact that the existing family of fuzzy controllers proves
that the approach can be successfully integrated with restrained hardware platforms. This is an
important advantage for the use of this methodology in pervasive computing field.

Solid mathematical background [15] exists also in the domain of mathematical programming
and decision-making with uncertain information represented by fuzzy numbers. Therefore, trust
represented as a fuzzy number can be easily integrated with advanced planning algorithms, as shown
in Chapter 7.

5.3 Fuzzy Numbers

Fuzzy numbers are extension of normal, crisp numbers in the same fashion as the fuzzy sets are the
extension of crisp sets. We may define (see [23]) the fuzzy number as a normal convex fuzzy set on
the real line, where normality means that the height of the set is 1; i.e. set has a non-empty core.
The set is said to be convex iff ∀(x, y, z) ∈ (R3), x ≤ y ≤ z holds that µ(y) ≥ min(µ(x), µ(z)).
Example of fuzzy number values can be found on fig. 5.1 or fig. 5.2.

Informally, the core of the fuzzy set is defined as a subset of the fuzzy set containing the elements
x whose membership µ(x) = 1. In some definitions, it is required that the fuzzy number core shall
be a single value and when this condition is not fulfilled, the term fuzzy interval is used. In this text,
we will only use the term fuzzy interval to emphasize the cases when the fuzzy number represents a
range, rather than value, but all results relevant for fuzzy numbers are valuable for fuzzy intervals
as well.

As we represent the trust, we restrict the support of the set to the [0, 1] interval. Moreover, we
limit ourselves to the fuzzy numbers defined by piecewise linear membership functions on the above
specified interval, to speed-up the computation and inference process.

However, the extension of simple real values to fuzzy numbers necessities also the extension of
basic operations on these quantities.

Ordering and ranking is a crucial operation necessary for partner selection. It has been studied
for example by Fortemps and Roubens in [29] or in [12]. The authors provide a method that is very
easy to implement with the limitations we have adopted and gives us the results that are intuitive
enough. The most notable difference from the real numbers is that the antisymmetry does not hold
for this relation on fuzzy numbers.

While using the fuzzy rules to take trusting decisions, we use the fuzzy numbers as inputs for
these rules. Therefore, we must be able to determine the inference with fuzzy intervals representing
the rules/decisions. We have opted for the use of Mamdani inference, defined as

DT (X∗, Ai) = hgt(X∗ ∩T Ai) (5.1)

where T is a selected t-norm (see [54]).We have selected the Standard (Gödel, Zadeh) t-norm, defined
as

T (A,B) = min(A,B) (5.2)

In theory, all the agent’s qualitative reasoning about the cooperation could have been done using
the fuzzy numbers and appropriate fuzzy arithmetics operations. In practice, the complexity of this
approach could not be justified in most cases. Therefore, defuzzyfication of trust values is necessary
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for selected operations. An obvious choice for defuzzyfied value is the core of the fuzzy number. In
the case of the fuzzy interval, the center of the core is chosen.

Fuzzy numbers presented in this paragraph are used in the formal model we propose to represent
the trust in agents.

5.4 Formal Model

In our formal model, we extend the existing trust representations using the fuzzy set theory. To do
so, for each agent A we define a set of agents trusted by agent A, denoted ΘA. We denote ΘA(X)
the membership function of this set defined on the set of all agents known to the agent A.

Whether ΘA is a fuzzy set or not depends on the value range and type used for trust definition.
Binary trust mentioned above results in a normal, crisp set - membership function takes only two
values, ΘA : Agents → {0, 1} - agent is either trusted completely or not at all. Use of the real value
in the [0, 1] (or [−1, 1] with transformation) interval defines a standard fuzzy set, ΘA : Agents →
{[0, 1]}.
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Fig. 5.1. Comparison of membership values for three types of the set - a crisp set, a standard fuzzy set and
a type-2 fuzzy set with fuzzy number membership.

Use of the fuzzy numbers to represent trust makes the set ΘA a type-2 fuzzy set, as the mem-
bership function itself is a fuzzy set, albeit a simple one (see for example [54]). This does not pose
any serious problem to us, as the mathematical concepts necessary to work with fuzzy values are
already well developed in the fuzzy control field. All the variants are shown in fig. 5.1.

The set ΘA represents the agent’s A trust in other agents as a mental state. Besides this represen-
tation, we need to address the following problems: (i) deriving the trust values from the experience,
(ii) updating the trust in agents using these values and (iii) using the trust values to make cooper-
ation decisions. We will address these issues in the following sections.

5.4.1 Deriving Trust Observations from Coalition Cooperation Results

In this section, we will propose a general method how to evaluate the trustfulness of the coalition
partners in a specific coalition C as a function of the utility generated by the cooperation. Using
this method, each coalition member A can obtain a single value in the [0, 1] interval representing
the trust observation τ for each coalition member Agent, denoted τA

C,Agent or simply τC,Agent when
no confusion is possible.
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We have decided to use a completely peer-to-peer approach that can be applied in most envi-
ronments where the agents cooperate to achieve their goals. As we try to keep our algorithm as
domain independent as possible, we start by normalizing the cooperation result into [0, 1] interval.
The simplest way would be to use the minimum utility (maximum loss) umin, expected (maximum)
utility umax and real, obtained utility u to measure the success ratio un using the formula

un =
u− umin

umax − umin
(5.3)

In theory, we could stop here. In practice, this linear relation is rarely appropriate, as shown by many
experiments [58]. Therefore, we will typically replace this relationship by subjective loss function
with umin and umax as parameters and u as an input to model the perceptions of gain or loss by
the agent. The result of this transformation is called subjective utility uA

s (or simply us).
As a simple example of such function, our agents do perceive the losses worse than linearly.

Therefore, they obtain their final subjective utility by raising the value un to power of two, obtaining
the value uA

s = u2
n used as an input for the suite of the process.

Raising to the power of two is an arbitrary choice, modelling the fact that the losses are perceived
worse than their real value, but may have another signification - attribution of the blame to an
individual, rather than to some stochastic process [35].

Each coalition member calculates its value uA
s and uses this value to obtain the values τA

C,Agent

for all other coalition members. Different strategies may be used to do so, analogously to profit
distribution in coalitions[40]. The cases we consider in the scope of the current work are:

– Equally - the value uA
s is used as an input to update trust in each coalition member.

– Proportionally - the observation value depends on the defuzzyfied apriori trust the agent has
in the coalition member and the uA

s . Currently, we use the relation:

τA
C,Agent =

defuzzy(ΘA(Agent))× us

AvgAgenti∈C(defuzzy(ΘA(Agenti))
(5.4)

where τC,Agent denotes the trust observation (real number) we derive from the agent’s participa-
tion in the coalition C. defuzzy(ΘA(Agent)) denotes the center of the apriori trust membership
function, formally core of agent’s membership function in ΘA.

The value u2
n (or τC,Agent respectively) is then used as an input for updating the trust in Agent as

described in the following section.

5.4.2 Iterative Learning of Trust Values

When we try to represent the trust in agent B ΘA(B) as a single fuzzy number, we must be able
to find an optimum form of this number to represent the past experience. Formal restrictions on
the fuzzy number are not very strict, but we limit ourselves to piecewise linear fuzzy numbers and
iterative learning in order to keep the processing lightweight and well adopted for potential embedded
solutions.

To simplify the notation, we will denote τA
B or τB all trust observations of agent A about the

agent B - suite of nB real values in [0, 1]. Note that these values are not kept in agent’s memory, as
the learning is iterative.

Strictly speaking, iterative learning requires that the new value for the ΘA(B) is obtained only
using the apriori value of the ΘA(B) and the observation τC,B . In order to make our algorithm easy
to understand, we shall maintain some supplementary simple data - like nB , number of previous
observations used to establish the trust in agent B and the Avg{τ2

B} used to estimate the variance
of the data as shown further.
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Trust average Avg{τB} is a good candidate to define the center of our fuzzy number - it is easy to
understand, it is consistent with non-fuzzy approaches and it may be computed iteratively, provided
that we keep both the current average and nB - number of observations used to obtain this value.

But besides the center, we need to represent the uncertainty at least by specifying the left and
right sides of the fuzzy number membership function. The simplest way to do so is to use triangular
fuzzy number and to define left and right bounds as min{τB} and max{τB}. This corresponds indeed
with the intuitive interpretation using the possibility theory (min and max values provide us with
an interval where the whole past experience falls). Moreover, the values are trivial to maintain
iteratively. On the other hand, two major drawbacks outweigh the advantages of this method - (i)
both values tend to have only limited information content in the real environments, as they are
often very close to 0 or 1 for most agents B and (ii) the uncertainty of the trust is actually non-
decreasing with growing number of observations nB , what is being counterintuitive. Another value,
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Fig. 5.2. Two proposed fuzzy number shapes for the trust representation - simpler triangular form on the
left, complex one on the right. Each represents different trust value.

at least partially solving the issues with minimum and maximum approach, is variance σ2
A{τB} or

standard deviation σA{τB}. It also has an advantage of being well understood and even if it cannot
be maintained iteratively as easily as average, it is possible to estimate it rather exactly using the
well known relation:

σ2{τB} ≤ σ̂2{τB} = Avg{τ2
B} −Avg2{τB} (5.5)

With growing number of observations, the right-hand side of the inequality approximates the variance
fairly well.1

The first representation we propose is a simple triangular fuzzy number, defined by three points
and two straight lines. The center - core of the fuzzy number - defuzzy(ΘA(B)) is defined by the
average Avg{τB}, left hand-boundary by the value max{min{τB}, Avg{τB} − ̂σA{τB}} and the
right-hand boundary analogously by the value min{max{τB}, Avg{τB}+ ̂σA{τB}}. Note that even
if the set τB is formally used in the definition, the min, max and other characteristic values we
actually use can be updated iteratively and no explicit history representation is used. Due to the
cropping of the number by the min and max values, this representation does not necessarily define
symmetric numbers.

Second representation that we propose extends the previous one by the inclusion of the min
and max data directly into the fuzzy number shape. The left boundary is now defined as min{τB},
right boundary as max{τB}, both with the membership = 0. Core is defined by the average value

1 We assume that the trust observations are conform to Gauss distribution.
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defuzzy(ΘA(B)) = Avg{τB}. However, two points were added on each side of the center, both
with membership = 1

nB+1 . Their coordinates are the same as for the left and right boundary in the

simpler version: max{min{τB}, Avg{τB} − ̂σA{τB}} and min{max{τB}, Avg{τB}+ ̂σA{τB}}. This
shape has an advantage of representing better the current experience and the uncertainty decreases
relatively steeply with the growing number of observations - the property that we consider crucial
for future extensions of the model. Both definitions are compared in fig 5.2.

In order to support the recent model developments towards better integration with social models
and planning and reasoning algorithms, two new concepts are introduced into the trust model.
Distrustfulness is defined as ∆Aj

(Ai) = 1 − ΘAj
(Ai) – it can be derived from trustfulness and

is only defined as a shorthand for easier problem specification. In its definition, we use classical
definition of fuzzy number substraction (A−B)(y) = supx1−x2=y min{A(x1), B(x2)}.
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Fig. 5.3. Shapes of trust ΘAj (Ai) and corresponding distrust ∆Aj (Ai) function.

Action Trustfulness

In addition to the above concepts related to agent trustfulness, we may use the weak delegation
concept as introduced in [16] to define the trustfulness of non-agent elements that we rely on without
the explicit commitment from them. In our case, we define the trustfulness of abstract action:
Θak

represents a trustfulness of a particular action ak and not of an agent2. Regardless of this
fundamental difference, the approach to its modelling remains strictly the same as for the agent
trustfulness and the update mechanism is still the one described for agents. Once we terminate the
plan execution and evaluate the new trustfulness values, we may determine the trustfulness of actions
in the same manner as trustfulness of individual agents, as each action contributes to the global goal
achievement. In the simplest manner possible, the agent may assign the same value to all actions,
effectively disabling the ”overbooking” mechanism in relation 7.1 – such behavior is appropriate for
environments with low failure rate. If the agent opts for action-level modelling, it may either consider
the actions on the same level as agents (action is considered as a team member for the purposes of
trust modelling), or it can model them on higher level and use the output of this level to determine
the expected outcome that is then used for agent’s trust modelling.
2 See Section 7.3 for more details on actions.
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5.4.3 Self-Trust as a Parameter for Trusting Decisions

In the paragraph above, the agent has never excluded itself from the group of agents between whom
we distribute the collaboration trust value. It means that the agent actually estimates the trust in
itself: ΘA(A). There are two good reasons for such behavior.

First, an agent does not necessarily trust itself - we may easily imagine a situation when an agent
runs on a hardware with malicious intruding software and is almost never able to protect its private
data and communications from platform-originating intrusion [4]. When the agent observes its self
trust and detects a significant decrease, it may decide to migrate, to interrupt communication with
others or even to terminate itself in order to protect the cooperators.

The other reason why we measure the self-trust is environmental adaptation. In many cases, it
is difficult or even impossible to estimate correctly what is the expected payoff of the cooperation in
the given environment. In our approach, we don’t take this factor into account during the evaluation
of the cooperation success - we rather integrate this information into the cooperation rules derived
from the self-trust data.

We define two linguistic variables [22] on the trust membership support ([0, 1]). First of them
is a low trust domain, denoted LTA while the other is high-trust domain, HTA. The sum of their
membership functions is equal to 1 on the whole interval [0, 1] - they form a partitioning of unity.

We use the self-trust data to establish the fuzzy intervals HTA and LTA as follows. First, we
define that HTA(1) = 1, a natural assumption as the complete trust is undoubtedly high. Then,
we say that agent A considers itself as trusted.(We use the self-trust for environmental adaptation,
rather than for intrusion detection.) Therefore, we say that HTA(defuzzy(ΘA(A))) = 1. From
this value on, we decrease the trust linearly until we reach the 0 membership for the trust =
max{min{τA}, defuzzy(ΘA(A)) − ̂σA{τA}}. LTA is complementary - it is equal to 1 between 0
and max{min{τA}, defuzzy(ΘA(A))− ̂σA{τA}}, where it starts to decrease linearly to finally reach
zero at defuzzy(ΘA(A)). The use of linguistic variables for the inference process is shown in fig. 5.4.
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trust (right segment). As the incidence with the high trust is bigger, agent is considered to be trustful.

5.4.4 The Decision to Cooperate and Partner Selection

A set ΘA and the fuzzy intervals HTA and LTA represent the mental state of the agent.
When an agent proposes a coalition or is invited to participate in one, it needs to take a trusting

decision; it has to decide which other agents are admissible as partners and order the admissible
partners by trust to minimize the risk.
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To establish whether an agent B is trusted, we use the formula 5.1 to calculate the incidence of
the trust in the agent B with the intervals HTA and LTA.

Dmin(ΘA(B),HTA) = hgt(ΘA(B) ∩min HTA) (5.6)

Dmin(ΘA(B), LTA) = hgt(ΘA(B) ∩min LTA) (5.7)

Agent B is considered to be trusted iff Dmin(ΘA(B),HTA) ≥ Dmin(ΘA(B), LTA).
When an agent A needs to organize a coalition, it identifies a subset of trusted agents. Then,

it calculates the usefulness (see [16]) of these agents for the coalition using the social knowledge
in its acquaintance model. The usefulness of each agent is then multiplied by the trustworthiness
(defuzzyfied) of this agent, to account for the willingness 3 and the candidates are ordered by this
value. Suitable subset of acceptable candidates is then invited to form a coalition.

In the opposite case, when the agent A is invited to participate in a coalition, it evaluates its
trust in the members of the coalition. When all members are considered to be trustful, it agrees to
take part in the coalition.

5.4.5 Trust Module Overview
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Fig. 5.5. Model structure and integration with agent reasoning.

In Figure 5.5, we can see how the model integrates with the rest of the agent reasoning (left
column) and how its components mentioned above are updated and used to take decisions. To
recapitulate, the utility function is used to provide relevant, but normalized input for trust model
when the coalition cooperation ends. The data is normalized and split between coalition members,
including the evaluating agent, for which we modify the self-trust value. This value is then used
to characterize the environment in which the agent operates, making the environment recognition
automatic. When the next team is being formed, the trustfulness of each member and leader is
evaluated and agent takes decision whether to participate/invite or not.
3 In this work, we consider usefulness and willingness as perceptions. Therefore, we model the environment

effects in the willingness rather than in the usefulness part, that is established using the information
provided by agents themselves.
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5.5 Experiments

In this section, we are going to present the empiric evaluation of the general trust we present.
The crucial quality of our model is robustness with respect to various levels of failure in the

environment and autonomous adaptation to current levels of failure. In the experiments shown below,
we show that the same model, without any pre-configuration can be applied in the environments
ranging from situations where the failure is exceptional to the situations where the success is rare.
In all the environments evaluated, we observe the speed of the adaptation - intuitively, the model
adapts best in the easiest situations and takes more time in the difficult settings with overwhelming
background noise.

5.5.1 Configuration of Experiments

In all our experiments, based on the ACROSS scenario described in Section 4.3, we have used equal
blame distribution between coalition members. The two groups of agents for which we present the
results consisted of 9 fair agents and 1 defector and 5 fair agents and 1 defector respectively.

In the two series shown in the following sections we evaluate the external effects of the trust
on the agent’s behavior, as well as the inner working of the trust model. First series, presented
in Section 5.5.2 concentrates on the external factors, as we compare the number of coalitions in
which the defecting agent participates and we look for the decrease in its coalition potential - a clear
proof that other agents progressively refuse any cooperation with this agent. In the second round
of experiments, as presented in Section 5.6, we evaluate the trustfulness of defector as observed by
other alliance members and compare - we actually look behind the coalition cooperation output and
observe the actual trusting decision.

In the first series of the experiments (Section 5.5.2), we evaluate the model in three environments
- A, C and D as defined in Table 5.1, while in the second series (Section 5.6) we add an intermedi-
ary scenario B. Scenarios differ by the level of background noise (random attacks) with increasing
difficulty - background noise increases from virtually nil in the Scenario A to 80% of the data in the
Scenario D. Variable rattack denotes the average ratio of informed attack attempts to uninformed
ones and rsuccess the average ratio of informed successful attacks (when some goods was stolen) to
uninformed ones.

pn pd rattack rsuccess

Scenario A 0 0.04 − −
Scenario B 0.0005 0.04 1 : 1.8 1 : 0.85

Scenario C 0.002 0.04 1 : 7 1 : 2.5

Scenario D 0.004 0.02 1 : 12 1 : 4

Table 5.1. Scenario settings.

5.5.2 Results - Coalitions

In the first series of experiments, we compare the average cumulated number of coalitions for the
fair and deceiving agent.

The three membership function representations we evaluate are:

– Real number trust, when the trust is represented by a single value Avg{τB}.
– Simple sigma fuzzy number trust, as defined by the first(triangular) description in Section 5.4.2.
– Enhanced fuzzy number trust, as also described in Section 5.4.2.
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We have conducted nine sets of experiments, where each set consisted in five runs to eliminate
random factors. We have chosen three different membership function listed above and we tested them
under three different settings regulating the background noise - Scenarios A,C and D as defined in
5.1.

Scenario A.

In the first case, the task was an easy one - the background noise was limited and attacks were
possible only in the case when a defecting agent was a part of the coalition. All three representation
methods have performed well and the defectors were correctly identified, as we can observe on figures
5.6, 5.7 and 5.8. We may attribute the lag in detection of agents to the length of cooperation and
to the need to establish a significant experience in order to refuse cooperation.
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Fig. 5.6. Scenario A: Environment with low level of background noise and real valued membership function
- Left: Smaller alliance. Right: Bigger alliance.
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Fig. 5.7. Scenario A: Environment with low level of background noise and simple sigma membership function
- Left: Smaller alliance. Right: Bigger alliance.
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Fig. 5.8. Scenario A: Environment with low level of background noise and enhanced membership function
- Left: Smaller alliance. Right: Bigger alliance.

Scenario C.

In the second case, the background noise was increased by activation of random attacks. This made
the identification process longer, as the agents need to identify both the environment characteristics
(using the self-trust) and the characteristics of their cooperators. Furthermore, the coalitions with
and without defector are more difficult to distinguish now. Due to these issues, some of the agents
cooperate with defector until later in the runs. However, agent is successfully detected and refused
by the majority of coalitions.

0

10

20

30

40

50

60

70

80

0 20 40 60 80 100 120 140 160 180 200
Time (Simulation cycle)

C
oa

lit
io

ns
 (C

um
ul

at
ed

)

Average

Defector

0

20

40

60

80

100

120

0 20 40 60 80 100 120 140 160 180 200
Time (Simulation cycle)

C
oa

lit
io

ns
 (C

um
ul

at
ed

) Average

Defector

Fig. 5.9. Scenario C: Environment with medium level of background noise and real valued membership
function - Left: Smaller alliance. Right: Bigger alliance.

Scenario D.

The third configuration is the most challenging one. We have further increased the background
random attacks probability and decreased the value of the information provided by defector by
decreasing the pd value. The results are mixed in this environment and provide a valuable guidance
for future enhancements of the model. In the big alliance, agents have no trouble with identification
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Fig. 5.10. Scenario C: Environment with medium level of background noise and simple sigma membership
function - Left: Smaller alliance. Right: Bigger alliance.
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Fig. 5.11. Scenario C: Environment with medium level of background noise and enhanced membership
function - Left: Smaller alliance. Right: Bigger alliance.

of the defector, even if the success is not perfect through all runs (averaged on the graph). In a
smaller alliance, the agents were unable to eliminate the defector. We may attribute this to the fact
that frequent cooperation with defector has influenced the environmental estimation of at least a
part of the agents, who therefore judge the defector trustworthy and attribute the failures to the
environment.

In the second series of experiments, we will concentrate on the underlying trust decisions that
define the above behavior and the overall evaluation will be provided in Section 5.6.1.

5.6 Results - Trust

In the second row of experiments, we have conducted four experiments, in the settings defined by
Scenarios A,B,C,D as shown in table 5.1. Results are provided for the bigger alliance only.

In these measurements, we have focused on a trust evolution during time in a noisy environ-
ment. Data plotted in the graphs shows for how many agents in the alliance the particular agent is
trustworthy. For sake of simplicity we have chosen only values of the defector and the average value
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Fig. 5.12. Scenario D: Environment with high level of background noise and simple membership function
- Left: Smaller alliance. Right: Bigger alliance.
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Fig. 5.13. Scenario D: Environment with high level of background noise and simple sigma membership
function - Left: Smaller alliance. Right: Bigger alliance.
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Fig. 5.14. Scenario D: Environment with high level of background noise and sophisticated sigma membership
function - Left: Smaller alliance. Right: Bigger alliance.
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throughout the whole alliance, including the defector. Size of the gap between the two values in the
given moment t grows with the number of agents that has detected the defector by the time t.
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Fig. 5.15. Trust evolution in Scenario A (limited background noise).

As in the previous case, the scenario A is considered to be a reference case as there are no
background attacks. We can observe how the trust of alliance members into defective agent falls –
figure 5.15. We should mention that average value of trusting agents is lower than in next scenarios
because each agent has a high self-trust and is therefore cautious trusting someone else. The actual
numerical trustfulness values ΘA(B) are lower than in the other scenarios, but the self-trust value
correctly identifies the environment as a low-risk one.
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Fig. 5.16. Trust evolution in Scenario B (low background noise).

In the second and third scenario (B,C), a new source of the background noise was introduced by
the activation of random attacks. This made the trust learning harder, as the agents need more data
to distinguish the coalitions with and without defector. Due to this issue, some of the agents trust
the defector and are ready to cooperate with it until later in the runs – figure 5.17. However, agent
is successfully detected and refused as a coalition member by the majority of agents, especially in
fig. 5.16, where the noise is comparable with the signal. We should emphasize that agents were able
to reveal defector from data (C) where only 29% of the attacks were caused by member defection,
while the 71% of attacks are attributed to background noise.

In the scenario D we have further increased the background noise and simultaneously decreased
the probability of attack with defection, making the environment even harder. As graph in figure
5.18 indicates, settings for Scenario D are on verge of reasonable limits. Although we can still detect
the defector, the difference between defector’s trustfulness and average trustfulness value in alliance
is low - about 10%. In such setups, we discover the limits of our approach - only about 20% of the
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Fig. 5.17. Trust evolution in Scenario C (medium background noise).
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Fig. 5.18. Trust evolution in Scenario D (high background noise).

observations correspond to the real agent defection. In the real applications, we can easily improve
algorithm performance by inclusion of context information (for instance the transport path length
in our case) and improve the algorithm performance in the well defined context.

The final graph (figure 5.19) summarizes all the results so that they can be compared.
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Fig. 5.19. Comparison of results between scenarios with different levels of noise. Lower values are better.

5.6.1 Observations

The preliminary experiments we have realized and described above alow us to draw several con-
clusions that are applicable for the future developments of our trust model ant its integration with
social model and planning, as detailed in Section 7.3. In the first experiments, we have evaluated
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the performance of various trust representations to verify whether the use of fuzzy numbers instead
of real values significantly increases the performance of the mechanism. We have not observed any
performance decrease while we have ”fuzzyfied” the trust representation value.

This finding validates the further use of this representation in the model. Therefore, in the second
series of experiments, we have evaluated only the fuzzy number representation of trust to validate
the output of the model (trustfulness) in the environments with variable level of noise. The results
are consistent with the first series of experiments – we can see that the defector is correctly and
promptly identified by the agents in the first three settings (A,B,C). The fourth setting, Scenario D,
presents the limit of usability of the model in its current state, when only 20% of observed defections
correspond to the adversarial actions.

The observations drawn in this section were used to specify the scenario of humanitarian relief
operation described in Section 4.4, as well as the reasoning algorithms of the agents in the scenario.
Figure 5.20 summarizes the evolutions of the model that will be presented in Section 7.3: integration
of fuzzy-number valued trust with decision-making tools and social knowledge in order to achieve
better coverage and higher security than by simply accepting/refusing the team-members at the
team formation stage.
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Fig. 5.20. Model structure and integration with agent reasoning, including the extension towards planning
layer integration. Compare with Figure 5.5.
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6

Solving Inaccessibility in the Adversarial Environment

This chapter is dedicated to answering two principal questions – first part (Section 6.1) character-
izes and analyzes the appropriateness of various techniques for solving inaccessibility, most notably
extending the concept of stand-in agent, while the second part concentrates on the crucial issue that
is common to all techniques described in the first part – efficiency. Efficiency is critical shall any so-
lution succeed in real environment, as the robustness always comes with a cost and keeping this cost
down (in terms of communication traffic as well as computational load) is a necessary prerequisite
for the deployment of described techniques. Therefore, Section 6.2

6.1 Presentation of Inaccessibility Solutions

In the Chapter 3, we have presented the problem of inaccessibility in multi-agent system and intro-
duced a method how to quantify and measure it.

We are now going to describe existing methods coping with inaccessibility. As defined briefly
defined in Section 3.1.3, two main approaches can be distinguished between them: building remote
awareness or remote presence.

6.1.1 Relay Agents

First, and perhaps the most classical solution to the inaccessibility problem are relay agents or low-
level entities, responsible for setting up a transmission path through other elements when the direct
contact between parties is impossible. Such protocols are currently widely implemented for routing
in various types of networks, like TCP/IP or on lower levels [78]. However, this solution is efficient
only if the network is in a ”reasonably connected” state (see figure 3.1). Besides this limitation,
that can be clearly distinguished in the results of our experiments, there are several other factors
limiting the use of relayed connection. These factors are for example reduced battery life due to
the fact that all the messages must be transmitted several times, or network maintenance overhead,
especially in case of mobile networks. Another factor limiting the use of relaying in agent systems
is the dynamic nature of their topology if the agent platforms are based on moving entities. In this
case, relaying cost increases as the link maintenance and path-finding in dynamic environment is a
non-trivial process.

6.1.2 Middle Agents

Middle agent is a term that can cover a whole range of different facilitators in a multi-agent system.
In a overview article [74], author lists different types of middle agents - Matchmakers and Brokers
(Facilitators). Matchmakers may provide remote awareness by notifying interested agents about the
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presence of service providers, while the brokers can act as intermediaries and pass actual service
requests between two mutually inaccessible parties. Even if this solution may perform very well in
many situations, it may be unusable if middle agents are difficult to find, unreliable, or can not be
trusted with private preferences of different parties.

6.1.3 Acquaintance Models

Social knowledge represent necessary and optional information which an agent needs for its efficient
operation in the multi-agent community. The social knowledge is mainly used for reduction of com-
munication, provides self-interested agents with a competitive advantage and allows agents to reason
about the others in environments with partial accessibility.

The acquaintance model is a very specific knowledge structure containing agent’s social knowl-
edge. This knowledge structure is in a fact a computational model of agents’ mutual awareness.
It does not need to be precise and up-to-date. Agents may use different methods and techniques
for maintenance and exploitation of the acquaintance model. There have been various acquaintance
models studied and developed in the multi-agent community, eg. tri-base acquaintance model [50]
and twin-base acquaintance model [14]. In principle, each acquaintance model is split into two parts:
self-knowledge containing information about an agent itself and social-knowledge containing
knowledge about other members of the multi-agent system.

While the former part of the model is maintained by the social knowledge provider (an owner),
the latter is maintained by the social knowledge requestor (a client). There are two possible ways
how the acquaintance model may be kept up-to-date, using push or pull-mode updates.

Social knowledge can be used for making operation of the multi-agent system more efficient. The
acquaintance model is an important source of information that would have to be repeatedly commu-
nicated otherwise. Social knowledge and acquaintance models can be also used in the situations of
agents’ short term inaccessibility. However, the acquaintance models provides rather ’shallow ’ knowl-
edge, that does not represent a complicated dynamics of agent’s decision making, future course of
intentions, resource allocation or negotiation preferences. This type of information is needed for
inter-agent coordination in situation with longer-term inaccessibility.

6.1.4 Stand-In Agent

An alternative option is to integrate the agent self-knowledge into a stand-in agent – a mobile
computational entity that is constructed and maintained by the social knowledge provider [61].
While using stand-in, the social knowledge requestor does not create an acquaintance model of its
own. Instead of communicating with the provider or middle agent, it interacts with its stand-in
agent. Therefore, client agent is relieved from the relatively complex task of building and keeping
up-to-date detailed acquaintance model and both provider and requestor may benefit from the full-
fledged remote presence. Factoring the acquaintance model out of the each requestor agent internal
memory allows it to be shared between all locally accessible agents, further minimizing the traffic
and computational resources necessary for model maintenance.

Stand-in agents operates in two phases. During the swarming phase, stand-ins propagate
through the system to reach the locations that may become inaccessible in the future.

In our implementation the community of stand-in agents operates in two phases: stand-in swarm-
ing and information propagation and social knowledge synchronization.

During the swarming phase, stand-ins propagate through the system to reach the locations
that may become inaccessible in the future. First, existing stand-in agent or knowledge provider
determines set of currently accessible locations using broadcast-like mechanism of underlying com-
munication infrastructure. It analyzes the locations and decides which entities are interesting for
further stand-in agent deployment, either because of the presence of knowledge requestor agent or
because it considers the location to be interesting for future spread. Then, it may decide to create
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and deploy its clones on one or more of these accessible locations. After its creation, each deployed
stand-in agent chooses the type of functionality it will provide in its location and repeats evalu-
ate/deploy process. The swarming propagation strategy is a crucial element of agent system tuning,
as we must find a delicate balance between information spread efficiency and resources consumed
by stand-ins.
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Fig. 6.1. The concept of the stand-in agent

Information propagation between members of the stand-in community is also a challenging
process to tune. , because the information flows not only from the knowledge provider towards the
stand-in community, but also from the stand-in community towards knowledge provider, or even
within the isolated parts of the stand-in community. When a member of the stand-in community re-
ceives an update of the shared knowledge, or updates this knowledge after having acted on behalf of
knowledge provider, it must determine if the information update is valuable enough to be propagated
to other members of the community and eventually to the knowledge provider itself. It determines
the list of currently accessible stand-ins in the community to which it will send the updated knowl-
edge set or relevant subset and keeps the updated information ready for future synchronization
with currently inaccessible stand-ins. In the presented original implementation, we use two different
approaches to information synchronization phase. In the first implementation, we consider the
cost of communication to be important and the stand-ins therefore synchronize their knowledge
only when they encounter. When they receive an information update, they don’t propagate it to
other accessible members of the community. The second approach is based on an assumption that
communication is cheap and that all updates are worth to be propagated to all accessible members
of the community. They sends every update to all accessible members of the community.

In this approach, any stand-in that updates the information or receives more recent version sends
this update to all accessible members of the community. When two stand-ins become accessible, they
exchange their information and join it into the shared common version, as ensured by domain-specific
joining algorithm. This policy ensures an optimum information quality on domain elements, but must
be optimized for domains with big number of locations and represented agents, for example using
existing results from peer-to-peer networks research domain[24].

The most important added value of stand-in agent is not in providing remote awareness, but in
providing rich, proactive and trusted remote presence by acting on behalf of knowledge provider.
However, as in any system working on the shared data, synchronization problems arise in the agent
community when the stand-ins accept commitments in place of knowledge provider.
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6.1.5 Solution Selection

It is not always an easy task to pick a well adapted inaccessibility solution from those listed above.
In the following paragraphs, we will use the accessibility metrics established in section 3.1 and
determine which solutions are appropriate for measured operations and domains.

Domains can be easily classified in respect to their accessibility using the metrics provided above,
but we shall also analyze the operations that are necessary to maintain the coordination between the
members of the agent community. For each such operation we define two parameters: the average
operation duration θω and operation periodicity, the mean time between operations, πω.

Most protocols used to establish the remote awareness don’t require complex interactions - one
message, or one message with acknowledgments is sufficient for typical interaction (subscribe, in-
form). Therefore, the efficiency of the knowledge maintenance is determined mainly by the ratio
between the parameter πω and τϑ, assuming that the accessibility time is sufficient for the transmis-
sion of a single message.

In the case of more complex operations, requiring remote presence and regular interaction with
remote agents, both parameters θω and πω are important. In the following, we suppose that both
the τϑ is bigger than θω, as the case of frequent short-duration dropouts can be managed by network
infrastructure. For an interaction to be successful, two conditions must be met:

– Interaction must start when the parties are accessible, requiring that the τϑ is short enough in
order to allow the interactions to take place sufficiently often, possibly in regular intervals.

– Interaction must be achieved before the connection is broken, requiring that τϑ is bigger than
θω.

If the two conditions above can not be satisfied by direct interaction (implying direct/link ac-
cessibility) between two entities or using relaying (path accessibility), it is necessary to resolve the
inaccessibility by using intermediary agents like brokers or stand-ins. Use of the intermediary agents
redefines the problem and we found ourselves in the precedent situation, as we have replaced the
communication between remote agents by the communication between agent and local (or consis-
tently accessible) intermediary. This intermediary, implemented either as a broker or as a stand-in,
is responsible for knowledge synchronization with the agent it represents using more sustainable
protocols.

When the domain forces us to use intermediaries, we have to decide whether we want to use a
stand-ins or brokers. As an input for this decision, at least the following questions shall be asked:

– Can the represented agent trust the intermediaries to follow its best interests?
– Are the goals, beliefs and strategies of the represented agent expressible in the language under-

stood by agents and intermediaries?
– Can we benefit significantly from the synchronization between mutually accessible intermediaries,

who are however inaccessible in respect to the represented agent?
– Are the platforms in our system strong enough to support a significant number of agents?

The four features mentioned in the questions can help us discriminate between the use of middle
agents - brokers and stand-in agents. Stand-ins can not be in a situation with a conflict of interests,
as they represent a single agent. Information exchange between the knowledge provider and stand-in
agent is typically more efficient, because the dedicated agents can make more assumptions about
the content of the information. It is also easier to represent the negotiation strategies in the stand-
in, while their detailed disclosure to broker can be risky (Or even impossible if this agent lacks
necessary abilities to execute them.) as these strategies may disclose agent’s private information.
Partial coordination between middle agents representing one agent in several locations can be much
more difficult to implement, as it demands a deep knowledge about the structure of the representation
data. On the other hand, the use of stand-in agent agents comes with a significant cost - we need
the mesh covering the cooperator’s locations to be sufficiently dense and we create one stand-in for
each represented agent in many locations.
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In the case of remote awareness, the situation is much simpler and the choice of mechanism
depends on average accessibility between locations of collaborating agents, number of agents in each
such location and the frequency of access to the social knowledge. This enables us to pick between
relaying, matchmaking social knowledge or stand-ins.

6.1.6 Experiments

Experiments presented in this section establish the boundaries of applicability of the solutions to the
inaccessibility problem presented in this section (Section 6.1). As we have already established the
inaccessibility characteristics in the scenario, (see Section 3.2), we will now study how inaccessibility
affects performance of our system. Three techniques for coping with inaccessibility will be analyzed,
but we will show that the obtained results are applicable to all methods mentioned above.

For our measurements, we have prepared a simulation featuring a logistics problem in collab-
orative environment (the same scenario as abstractly described in the Section 3.2.1), where the
humanitarian aid must be delivered to the zone ravaged by a disaster. In the domain, we will de-
ploy three main types of entities: 5 aid sources, called ports, where the material comes in; 5 aid
sinks, called villages, where it is consumed and 7 transports carrying the aid between ports and
villages. Each transport has its predefined route that does not change during the simulation. Aid
requests in the villages are generated by predefined script to ensure uniformity between simulation
runs. They must be transmitted to the ports to ensure that the proper material is loaded on the
transport going to the village. The way these requests are transmitted depends on the inaccessibility
solution that is currently applied. We suppose that the physical communication links between the
entities are limited-range radios, therefore the link exists if the distance is smaller then parameter
%. This parameter varies between different scenario runs to model different possible configurations,
from complete link accessibility to only local (same position) accessibility.

In total, 33 results are presented, with 11 different communication ranges and 3 different ap-
proaches solving the inaccessibility problem:

– relaying transmissions by relay agents (6.1.1) – loading of the goods on a transport is possible
only if a communication path exists between the destination village and the port in the moment
when port-based entities negotiate the cargo to load,

– stand-in agents that only carry the information with no sharing in the stand-in community (see
section 6.1.4),

– community stand-in agents, sharing the information updates with other members of the stand-in
agent community (see also section 6.1.4).

To guarantee the uniformity of results, we have used the same negotiation protocols and work-
flow for the interaction between the acting agents and their environment. Both the requests in
villages and goods in ports are generated from unique pseudorandom sequence used for all mea-
surements.The only aspect that differentiates the scenarios is the mode of information transmission
between requesting villages and goods providers in the ports.

Comparing the Solutions

After having determined the extent of inaccessibility in our system, we will study the effects inac-
cessibility has on the system performance. The system performance is given by a number of goods
successfully delivered to villages. Zero value means complete failure, when no goods were transported,
while 1 implies that all orders were completed.

On the following graph (see figure 6.2), we can observe the relationship between path accessibility
and overall system performance for each of three measured solutions. Here we present the average
requests coverage for different solution of inaccessibility. Results do follow the accessibility state
partitioning from the previous paragraph. We can see that relay agents start to be reasonably useful
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Fig. 6.2. The average requests coverage of three presented inaccessibility solutions and different accessibility
settings.

when the link accessibility reaches 0.2, in the middle of the transition phase, well corresponding to
the percolation threshold. Performance of isolated, non communicating stand-in remains constant.
This is easy to understand, as these agents communicate only locally. They present an optimal
solution for disconnected networks, as they require only a small number of messages to function.

On the other hand, performance of interacting community of stand-ins is more than a mere
supremum of both previous methods. This is allowed by the dynamic nature of the system, where
the stand-ins on mobile entities carry the up-to-date information through the system and spread it
in small local communities, but relatively often. Thanks to this approach, the efficiency of system
with these stand-ins approaches the optimum level with path accessibility of 0.4, instead of 0.9 for
relay agents.

The goal of our measurements was to analyze the minimum and maximum performance of differ-
ent solutions for inaccessibility. The measurements were carried out for three of the possible solutions
described in section 6.1. We argue that the results we have obtained for stand-ins are the same for
other solutions, middle agents and social knowledge, as the boundaries of performance of theses
solutions in a perfectly collaborative environment are the same. Note that we consider only the
boundaries of performance and applicability of different methods. The synchronization load on the
system is very different for each solution and the coordination protocols used by agents must be
adapted to the selected approach and problem domain. Due to the fact that most operations in our
system were very short in duration, the conclusive measurements of impact of other inaccessibility
parameters, like τϑ and τϑ were impossible to obtain.

Evaluation of Experiments

As we have shown above, stand-ins and broker agents provide more than a viable alternative to
message relaying in environments with low link accessibility or high cost of communication. They
allow efficient coordination and collaboration in communities with low and transient accessibility
and they match the performance of relaying in connected communities. However, the implementation
of the intermediary agents for a given domain is not trivial and their use in larger communities of
agents requires some additional tuning of two principal methods they use – swarming of the stand-in
agents and knowledge distribution/synchronization between intermediaries.

In the next section, we will address the most important problem related to the introduction of
above-mentioned techniques to the multi-agent system. We have seen that around and above the
percolation threshold, the number of messages used for synchronization increases dramatically and
that the number of stand-ins or other middle agents can locally or globally exceed the necessary
number. Therefore, as we present in Section 6.2, we have focused on efficiency concerns and we have
devised a method that may be combined with all techniques defined in this section.
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6.2 Optimizing the Inaccessibility Solutions

In Chapter 3, we have provided a definition of inaccessibility and the mathematical model that
correctly describes the inaccessibility in a geographically distributed multi-agent system. In the
previous section, we have also investigated several possible solutions for inaccessibility and evaluated
their appropriateness in different types of environment - from nearly inaccessible to almost completely
accessible.

In this chapter, we further extend the concept. Following the results from the experiments, we
are now trying to optimize the behavior of the multi-agent system to make it more efficient (by
reducing the number of messages), while maintaining the robustness with respect to inaccessibility.

In dynamic systems, possibly with mobile agents, the accessibility values change over time. In
those case, time-averages are used to describe the system nature.

Different values of either of the accessibility quantities specify completely different set of problems
to be solved. In the situations with low path accessibility we need to investigate mechanisms how the
agents can coordinate and plan commitments even if they are temporarily inaccessible. Providing
solutions for these problems is highly domain specific. In the situations with high path accessibility
and low link accessibility we need to optimize the forwarding mechanism so that the optimal number
(and right location) of the relay nodes is used. The second class of problems, which is substantially
more domain independent, will be discussed herein.

Inaccessibility solutions, as introduced in the previous section, can be divided into mechanisms
providing remote awareness – providing the inaccessible agent with the information about the
inaccessible part of the infrastructure and remote presence – an ability of inaccessible agent to act
remotely (by e.g. stand-in agents acting on the inaccessible agent behalf [61]). Some inaccessibility
solutions are based on agents individual maintenance of their social knowledge and acquaintance
models [42] or by deployment of various kinds of middle agents such matchmaker agents [73],
brokers [74] or stand-in agents. A generic model of the middle agent, based on the stand-in concept,
is suggested and presented in Section 6.2.1. Throughout this Section, term middle agent will be
used as generic denomination for matchmakers, brokers and stand-ins, as our findings are applicable
to all above mentioned methods. However, all the measurements and experiments were done using
stand-in agents.

In this deliverable, we address the problem of optimal distribution of middle agents in the dis-
tributed dynamic multi-agent system and message flow optimization between these agents to ensure
optimum balance between efficiency and redundancy. We don’t explicitly restrict the algorithm use
to particular type of middle agent, as it can be integrated with all the technologies defined above.

We shall note that in the real dynamic systems, the accessibility values are rarely homogenous.
Clusters of agents often tend to move together and encounter other agents directly or via relays.
Therefore, the optimization algorithm must (i) ensure the existence of middle agents and message
transmissions to optimally connect1 the multi-agent system, while (ii) being local in the sense that
middle agents shall be able to operate with the local environment information only, without the need
for the central coordination. System adaptivity (iii) is another crucial factor, as it shall autonomously
adapt to current local environment both in time and in place, but the whole algorithm shall be also
(iv) efficient in the number of messages consumed and computational load. Community stability (v)
is closely related to efficiency as the overly rapid adaptation can significantly increase computational
load of the system.

The algorithm we propose is based on virtual payments combined with social dominance [75, 65]
model, as detailed in Section 6.2.2.
1 Optimal connectivity is defined as a ratio of mutually accessible agent pairs and a proportion of the

messages actually delivered.
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6.2.1 Middle Agent Architecture

In this section we will address integration of the algorithm (see Section 6.2.2) with the generic middle
agent architecture. Unlike classical middle-agent architectures [73] where the prime functionality is
devoted towards matchmaking and negotiation, we would like to extend the concept of middle agent
by its capability to autonomously migrate in the network, clone and destruct copies.

Information
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controller

Middle Agent
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Activity knowledge
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Fig. 6.3. Middle agent architecture.

In Figure 6.3 we present our algorithm component – swarming controller in the context of middle
agent architecture.

– Swarming controller – consists of two modules: population manager ensures cloning, mi-
gration and destruction of middle agents in the system while the information propagator
manages information flows through the agent, more specifically the messages or knowledge to
transfer or actions to take. The module must balance between two extreme cases of knowledge
handling: propagation to all visible targets or no propagation at all. Even if both modules are
domain independent, they depend on the domain specific functions included in the knowledge
base algorithms. Details of the algorithm used are described in the dedicated section 6.2.2.

– Knowledge base, a domain specific knowledge structure of the middle agent, consists of three
parts: activity knowledge, information evaluator and timeout checker. While the activity
knowledge contains the domain specific knowledge and the meta-data provided by the propa-
gator, the information evaluator and timeout checker are the algorithms working on this knowl-
edge. The information evaluator classifies and indexes the knowledge, so that the index values
can be used by information propagator to manage its activity and further propagation. It also
evaluates the knowledge usefulness. The timeout checker module implements forgetting of the
activity knowledge.

– Middle agent functionality – universal interface between modules and agent platform. It
provides fundamental agent functions (clone, migrate and die), message interface and monitoring
listeners, as well as original middle agent code. This code depends on the actual type of the middle
agent. Via monitoring listeners it notifies modules about visibility of the other nodes, information
about accessible other middle agents and also about presence of potential message receiver. Only
this part of relay agent needs to be changed to work properly with another agent platform.
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Fig. 6.4. Middle agent network covers the ACROSS domain.

Besides middle agents, the later presented algorithm can be also integrated with simple relaying
agents whose functionality is based on sole, uninformed message forwarding.

On the Figure 6.4, we present a sample middle agent network in ACROSS domain, as described
in dedicated part of the document: nodes represent fixed locations, lines between nodes means that
there exists a communication link between them and residing middle agent is represented by point
near the node. In the next section we will discuss the details of swarming controller module that has
placed the middle agents in the system.

6.2.2 Swarming Controller

As mentioned above one of the key issues in middle-agent operation is their proper location in the
network. The distributed middle-agent allocation mechanism uses only locally accessible information.
It does so not only minimize the network maintenance communication, but also allows operation
in the disruptive or partially inaccessible environment. Locally accessible information is obtained
by monitoring middle-agents neighborhood – identifying currently visible targets and other middle
agents. The algorithm needs to be lightweight and computationally simple, as the middle-agent
instances can be constrained by the devices they run on. Scalability in space and density shall also
be an important property of the targeted solution.

In principle there are two key approaches to controlling the efficiency of the middle agents
allocation:

1. forward swarming control – where the middle agent migrates its clone only to the locations with
higher possibility of future inaccessibility and higher interaction expectancy and

2. backward swarming control – where the middle agents dispatch their clones to every reachable
destination and the useless ones are eliminated in the future following the inaccessibility real
situation.

Each of the approaches has its pros and cons. The forward swarming control is computationally
efficient, as it tries to minimize the number of stand-in agents in the system and prevent the possible
swarming explosion. This is why that approach seems to be particularly suitable for domains with
high scalability and operational efficiency requirements. On the other hand, the backward swarming
control has got an important advantage. This approach is substantially more domain independent,
demands less knowledge about the environment nature and is more robust, as it doesn’t explicitly
use any prediction about the future of the community.
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In this stage of the project, we have opted for the use of the backward swarming, as this approach
is more robust and domain independent.

Abstract criteria of the system quality defined in the introduction were also formulated in a
precise manner, with descending priority:

– Provide connection between any two system elements through the minimum number of middle
agents.

– Minimize the number of middle agents in the system.
– Minimize the number of messages for system operation and/or knowledge maintenance.

Population manager is driven by a biology inspired algorithm. Social dominance and altruism
models [75, 65] were successfully used to partition the group of agents into those who work for the
good of the community and the others, who profit from the altruism of the first group. During the
experiments with rats, it was determined that a exactly the sufficient number of individuals behaves
in an altruistic manner to optimize the whole group fitness. They bring the food and share it with the
others, who only consume. This behavior is formalized by a simple mathematical model formulated
in [75].

To ensure the target coverage, middle agents can be reproduced in the system using two main
propagation strategies:

– full flood fill – any middle agent initiates full flood filling reproduction strategy when it identifies
a new unserved knowledge target in its reach. To decide whether the target is really new, all
agents keep the set of served targets, that includes both the other middle agents and knowledge
final users. Target is removed from the set when it is not used for specified duration – forget
time. In practice, the middle agent is cloned to every visible node where it is not running yet
if the new knowledge target is not reachable from current position of the agent. Created clones
further clone themselves to new locations without existing middle agents using the same cloning
termination condition: target reachability. Only this simple strategy can ensure that the middle
agent network will reach the target. Using random walk instead of flood fill is possible, but not
advisable, because the random walk does not guarantee finding the target, as known from Pólya’s
random walk theorem2 [3],

– bounded flood fill – this is depth-limited version of the previous reproduction strategy. After the
initiation, the middle agents are successively cloned only to depth specified by FloodFillDepth
constant. This reproduction strategy is triggered by a local accessibility change when the source
agent holds relevant, non-expired knowledge. Application of this mechanism can identify shorter
paths enabled by the accessibility change or can deliver the knowledge to the isolated cluster by
the middle agent on the mobile node.

Both flooding strategies are time limited. There is specified constant flood duration during which
the middle agent retains reproduction intention. When this period expires, the agent no longer
reproduces until the new reproduction is started by the agent itself or the others.

To keep the number of middle agents close to optimum, the population manager contains also
the methods that decrease the number of middle agents in the system:

– In random duels the attacking middle agent randomly selects an adversary between accessible
agents and launches an attack with force proportional to its profit during specific period, as
determined by information propagator (see bellow). Besides the attacks force, the attack also

2 Pólya considered a d-dimensional array of lattice points where a point moves to any of its neighbors with
equal probability. He asked whether given an arbitrary point A in the lattice, a point executing a random
walk starting from the origin would reach A with probability 1. Pólya’s surprising answer was that it
would for d = 1 and for d = 2, but it would not for d ≥ 3. In later work he also analyzed two points
executing independent random walks and also at random walks satisfying the condition that the moving
point never passed through the same lattice point twice.
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includes the information about its active target set at the time of the attack. The attacked agent
evaluates the attack and decides whether it won or lost. If the attacked agent loses, it removes
itself from the system; losing attacker is not penalized for the attack. Attack evaluation compares
the active targets first and when one is a subset of the other, its owner loses the fight. When
the sets are identical, force of the attack decides the fight – stronger agent wins. Active target
set size is evaluated differently for new and old agents. For the young agents that are not yet
completely adapted to the environment, the set contains all directly accessible targets, while it
contains only the really used ones. Besides this advantage, the youngest agents benefit from the
immunity period, during which they can not lose a fight while attacked.

– In contrast to the previous case, the uselessness detection is an individual process. The middle
agent can remove itself while it is isolated from the rest of the community and no access to
relevant knowledge anymore.

Information propagator manages knowledge propagation and use in the system. This com-
ponent uses virtual payments to reward the other agents for the knowledge, receives payments from
the others for the information provided and generates the profit also from acting on behalf of the
represented agent. Each agent optimizes its profit, ensuring the overall information flow efficiency.
More specifically, middle agents reward the information received from the others in function of infor-
mation usefulness and redundancy – the first agent from which they receive the information receives
significant payment, while the subsequent information is rewarded less. On the other hand, the trans-
mitting the information to other agents is not free of charge for the agent – it must carefully decide
to which agents it propagates which information. The decision is taken in function of the previous
experience (and current network status) with similar knowledge, and the knowledge source and po-
tential target are important, domain independent similarity criteria. Besides these criteria, we may
enhance the knowledge with meta-data specifying to which agent it has been already provided. To
make the system more robust, the decision to which nodes we send the information is probabilistic
– agents may therefore send the knowledge to the less rated directions to find better paths in the
system. Payment for the information is transmitted as a reply to the knowledge update message.

Historical data (represented as probabilities assigned to knowledge characteristics, origins and
targets) that are used to identify the targets to which we send the information are periodically
updated and the old data is discarded. When a new target appears, the initial message transmission
probability is set to the level derived automatically from the current network state of the evaluating
agent.

The domain specific functions that evaluate the usefulness of the knowledge, indexable knowledge
characteristics and rewards for actions are provided by the domain-specific knowledge base.

We shall keep in mind that the knowledge is not only propagated by messaging in the network
of middle agents, but also carried by the agents created during the reproduction process. This is
especially important for the communities where the accessibility is relatively low, or where the agents
are clustered.

6.2.3 Experiments

In this section, we describe a set of experiments with middle agents in fixed and partially mobile
mobile ad-hoc network. Agents are running on simulated nodes and can migrate between accessible
nodes. In the system, both fixed and mobile nodes are used.

A pair of containers is mutually accessible if each of the two containers is located within the
visibility range of the other container. In the experiments, we use testing agents that implement a
FIPA CNP [67] in which all requests must involve at least one middle agent, even if a direct link
between the sender and the receiver exists, and we didn’t use any advanced middle agent capabilities
to keep the results middle agent type-independent. Therefore, our agents worked in a simple relay
mode, not using any social knowledge. However, the use social knowledge typically further decreases
the number of messages necessary [53].
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When system is started, no middle agents exist. The first middle agent is created by the sender
who wants middle agents to deliver its request to one or more targets. This first middle agent then
propagates using the full flood fill as described in Section 6.2.2.

6.2.4 Information Propagator Adaptation

In the first experiment, we have deactivated the population manager to keep one middle agent and
one test agent on each of 24 nodes in our network. As a ”worst” case scenario, full link accessibility
case was set to obtain the slowest convergence of the number of messages towards the optimum, as
many loops and alternative paths exist in the network. In the scenario, one of the testing agents
periodically starts a testing CNP to all test agents. The results (Fig. 6.5) show the systemwide
number of transmitted messages per each CNP round. We provide the results for two different
values of the forgetting parameter. This parameter should be zero in cases of non-changing topologies
because all knowledge previously stored in information propagator can be reused and the system
rapidly converges to the optimal number of 119 messages per CNP round. When we increase the
value of the forgetting parameter, the number of messages per round can’t converge to the optimum
because a certain amount of the knowledge is being lost. The experiment shows that the number of
messages is decreasing exponentially until a certain threshold is reached. After reaching the threshold,
the number of messages per round remains more or less constant. The experiment also verified that
in case of the full accessibility, any routing path contains exactly one middle agent.
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Fig. 6.5. Message reduction using different forget parameter (f) value in fully connected environment with
24 nodes. Bottom chart has logarithmic scale on Y-axis.
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6.2.5 Adaptation to the Changing Environment

In this experiment, the visibility range was set to minimize the link accessibility, but to maintain
complete path accessibility. Testing agents and relay agents were set up as in the previous experiment,
but the population manager was enabled this time, causing the number of relay agents to vary over
time. We measured the evolution of the number of middle agents at three levels of inaccessibility
dynamics. To determine the optimal number of stand-in agents in each moment, we have implemented
an efficient centralized algorithm briefly presented in the next paragraph. In our domain, where the
accessibility is distance-based, this algorithm behaves optimally.

Reference Solution

This algorithms finds the shortest routing paths between all pairs of the agents and selects a subset
of these paths that is supported by the minimal number of middle agents.

The communication environment is described as a non-oriented and non-valued graph G = (V,E)
where V is a set of nodes and E is a set of edges between link-accessible nodes.

Let set solved contain the nodes where the middle agents should be placed. distance(ci) is a
number of edges in a shortest path pi between the couple of nodes ci. The algorithm processes all
couples ci with distance(ci) = 2. Let fpci

= {pi} is a set of the shortest paths between a couple of
nodes ci. mid(pi) is the node in the middle of a path pi, where length(pi) = 2.

solved = ∅
nearCouples = ∅
C = set of all couples of nodes
for (∀ ci ∈ C) {

if (distance(ci) == 2)
nearCouples = nearCouples ∪ ci

}
while (nearCouples != ∅) {

allConflicts = ∅
for (∀ nni ∈ nearCouples) {

if (∀ pi ∈ fpnni
: mid(pi) /∈ solved) {

conflicts = ∅
for (∀ pi ∈ fpnni

)
conflicts = conflicts ∪ mid(pi)

}
allConflicts = allConflicts ∪ {conflicts}

}
addThisRelay = most frequented node in allConflicts
for (∀ nni ∈ nearCouples) {

if (mid(nni) == addThisRelay)
remove nni from nearCouples

}
solved = solved ∪ addThisRelay

}

The algorithm returns solved, the minimum set of nodes where the middle agents must be placed
to connect all couples ci with distance(ci) = 2. Using induction, it can be proved that the solved
set supports also the shortest paths between any couple ci in the system, regardless of their distance.

The algorithm takes a couple of nodes ci whose distance(ci) = 2 and determines all nodes that
lies on the fastest paths between the couple. If there is no middle agent on either of these nodes
they are placed into conficts. In allConficts are separately stored conflicts generated by all
the couples in the graph. The most frequently added node in allConflicts is added to solved
set. After that the allConflict is set clear and the algorithm repeats until all two-edge paths are
interconnected by a middle agent.
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Fig. 6.6. The figure presents adaptation of middle agent network to the changing environment with different
speed of changes: from infrequent changes (top chart) to the fast, frequent changes (bottom chart).

Results

At first (Fig. 6.6, top) we were slowly changing visibility ranges on the network with fixed nodes. In
the second setup (Fig. 6.6, middle), we have added 1 mobile node into the network. The movement
of the mobile node through the whole network introduces local accessibility changes. In the third
setup (Fig. 6.6, bottom), two mobile nodes were moving faster through the community, causing more
important disturbances in the network topology.

In the experiments, we clearly demonstrate that the agents are able to organize themselves
efficiently and to approach the optimal number as determined by the reference algorithm. However,
after the steep initial decrease, we can observe the peaks that correspond to agent propagation in
response to the topology changes. In the mobile scenarios, we have failed to match the reference
solution perfectly, as the adaptation time is somewhat higher than the average change period, but
the results remain comparable and the robustness and distribution of the algorithm provides enough
of the incentive for its application.
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6.2.6 Observations

In the experiments, we show that our solution is efficient in communication, is robust with respect
to important environment changes and ensures complete system connectivity in the environments
with high path accessibility and low link accessibility. The mechanism can be integrated with any
type of middle agent and its compatibility with various middle agent types makes it applicable also
in disconnected environments. So far, our experiments have proved that mechanism performs well
in the environments with high path accessibility and relatively small number of mobile entities or
accessibility changes. In the following chapters, we will present the integration of the mechanism with
stand-in agents to efficiently support coalition cooperation in inaccessible, adversarial environment.
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7

Efficient Teamwork in Inaccessible and Adversarial
Environment

This chapter presents the design of a prototype solution integrating the concepts developed in this
project into a coherent system solving the Humanitarian assistance problem presented in Section 4.4.
While the problem (and part of the implementation) are certainly domain dependent, most of the
techniques are generic - they can be used to solve similar logistical or other distributed coordination
problems, by carefully integrating them into the system appropriate for the problem environment
that can be characterized using the techniques from Chapters 2 and 3.

While the Section 7.1 describes the problem solved in a generic manner, Section 7.2 describes the
techniques used to solve the inaccessibility related issues, and Section 7.3 presents the integration of
trust model with social model and efficient distributed planning techniques that take into account
the disclosure of private information and trust data from the model.

7.1 Problem Statement

On the background of the scenario presented in Section 4.4, the Humanitarian Agents must lead the
system to solve following tasks:

1. Acquire the knowledge about the disaster extent and the needs of the population in the disaster
area.

2. Using the information from the previous step, plan the quantities of the goods to deliver to
various locations in the disaster area.

3. Humanitarian Agents have no transport of their own. Therefore, they must use the services of
other Transporter agents to actually deliver the cargo. Humanitarian agents are keep the role
of the coalition leader, therefore, they must be able to plan the transport efficiently, taking into
considerations the following aspects:
Resource Availability for all potential members must be taken into account to avoid unneces-

sary negotiation and to use the available resources in an efficient manner1. Therefore, agents
must maintain a model of the other’s agent resources in order to be able to plan locally,
but with relevant information and resort to negotiation only in later stages of the planning
process.

Private Preferences of the coalition members are never openly communicated to Humanitar-
ian agents or other agents. Therefore, each agent must agree to participate in a team each
time it is composed, requiring a multi-step negotiation.

Private Information Disclosure must be minimized. Therefore, transporter agents that act
as coalition members don’t typically disclose the complete information about their resources,

1 In such a complex problem, claiming optimality is nearly impossible.
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but only the aggregate information that is sufficient for high-level planning, but won’t en-
danger the agent’s assets.

Adversariality Consideration : the solution we propose shall be robust with respect to ad-
versarial actions. It shall be able to estimate the effects of adversarial actions on the plan
execution and to adapt the plan accordingly, as well as consider the trustworthiness of coali-
tion members while assigning the tasks. Therefore, accumulating the previous experience in
appropriate form (trust model in our case) is necessary. As trustfulness data are only rarely
exact, the planning must be robust wit respect to errors, uncertainty or bias in the data.

4. Even if most operations happen outside of the accessible/observable area, coalition leader must
be able to gather data on individual actions results and other events during plan execution. This
data can be used for two purposes: current plan replanning and update of the trust values for
future planning.

To solve the above issues, we have designed the system depicted in Figure 7.12.
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Fig. 7.1. Prototype Overview: Coalition cooperation in inaccessible and adversarial environment.

In the Figure 7.1, we can distinguish the dashed lines that represent physical actions between
agents (or rather their respective hosting devices), while the solid lines represent the communication
acts. At first, the Client Agent (Location agent in a disaster area) demands the help in form of
goods delivery from the humanitarian agent stand-in deployed in the area. Stand-in updates its
knowledge with the request and in turn propagates the information through the stand-in network
to its owner (orange lines). Humanitarian agent will then assume the role of coalition leader and
will use the social knowledge it has about transporter agents (green lines represent social knowledge
maintenance) to prepare preliminary action plan that is negotiated with transporters and finally

2 To simplify the development, we have parted with an assumption that all Transporter Agents who par-
ticipate in the coalition are accessible to coalition leader (Humanitarian Agent). This assumption doesn’t
endanger the generality of the approach, but saves us from tedious and costly re-implementation of all
protocols used by Transporters through their stand-in agents. On the other hand, the communication
between Location agents in the disaster area and Humanitarian agent passes through stand-in network.
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launched (red lines) as detailed in Section 7.3. As soon as the plan execution is launched, coalition
leader’s stand-ins in the disaster area receive the task description and subscribe with Location agents
in their vicinity to observe fulfillment of objectives (deliveries or failures to deliver), represented by
light-green dashed lines. The observed data is communicated to the owner (green lines), also through
the stand-in network mechanisms.

In the following paragraphs, we will present the elements of our solution that were introduced
in the overview and discuss the techniques researched in the course of the project as they were
integrated.

7.2 Stand-In Agents

The adversariality of the environment makes the choice of the inaccessibility solution technique
as restrained process – middle agent or relays are potentially adversarial and can not be trusted
with sensitive data. Therefore, the solution is a combination of social knowledge (see Section 6.1.3)
with stand-in agents (see Section 6.1.4), where stand-in agents gather the social knowledge and take
commitments on behalf of the humanitarian agent. Commitments and social knowledge then serve as
an input for the planning. Swarming of the stand-ins of the humanitarian agent is typically complete
and unrestricted due to the highly dynamic nature of the network introduced by the vehicles. In our
experiment, we assume that any container is ready to host humanitarian agent stand-in and that
the agents it encounters provide it with necessary information and services upon request.

Humanitarian stand-in directly communicate with location agents in disaster area and partici-
pates in the auctions – this is allowed by the local presence as auction requires multi-stage interaction.
It makes a proposal independently, and if accepted, communicates the data to the Humanitarian
Agent that organizes the transport and transmits back the actual coverage. This transmission is not
that time critical and both the request and answer pass through the stand-in network.

Once the coalition is formed and transporters have committed to their tasks, the stand-ins
receive the complete information about the task assignment, as shown in Figure 7.2. They analyze
the information, select the actions that are relevant to them and use SUBSCRIBE protocol to
receive the information about deliveries and failures from the accessible locations. Once they make
the observation, they update their knowledge and use the information propagator to select the set
of stand-ins to convey the information to. The same operation is performed when the observation is
received from another stand-in. Therefore, the Humanitarian agent is informed about the results of
the plan execution and can act accordingly.

As a general design principle, the social model has to be shared pragmatically, as sharing induces
synchronization costs and can cause security risks if the security of the host platform of the stand-in
is breached. From the above description, we can see that the stand-in doesn’t need to maintain the
complete copy of the social knowledge of the owner agent: we restrict its knowledge to the following
elements:

– Location demands, the stand-in has committed to, are transmitted to owner as an input for
the planning process.

– Plan Breakdown and Task Attribution to team members for each coalition the owner agent
leads: this data is used by stand-in to gather the information about task accomplishment that is
not observable by its owner due to the inaccessibility. This knowledge structure also stores the
task results observed or received by the agent.

When the knowledge is no longer necessary, it is discarded automatically and the corresponding
SUBSCRIBEs are terminated as well.

The tricky part of the knowledge maintenance to handle in this scenario are multiple observations
of the same event. In our case, the original event message ID3 is included in the update and allows
3 Assumed to be unique.
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the agent to check for duplicity. If such ID is not available, similar checks must be done using the
content of the message.

Information propagator depends on probabilistic routing model. This model contains probabilities
of transferring the knowledge to other accessible stand-ins. The model maintains its efficiency by
incorporating the virtual payment system - each message any stand-in receives is rewarded according
to its significance and novelty: in our domain, demands from locations are more significant than
observations of batch deliveries. Novelty is assessed on a more complex scale, where the first agent,
who communicates the knowledge, receives a high reward, the second one gets significantly less and
the subsequent payments are rapidly decreasing under the cost of message sending.

Propagation mechanism was improved by the introduction of ”tombstone”. When a stand-in
agent dies on a container, it leaves behind a simple sign (”tombstone”) to prevent the cloning of
another stand-in from different source. The grave disappears automatically after predefined period
of time, allowing readaptation in case of environmental change. This feature is important in highly
variable mobile environments, where the creation/destruction rate would be too high otherwise.

Fig. 7.2. Humanitarian stand-in GUI featuring one surveyed plan decomposed into individual tasks and
batches.

7.3 Trust-Based Planning for Adversarial Domains

In this section, we address the problem of collaborative logistics planning in uncertain, self-interested
and adversarial environments, while not considering the inaccessibility for the moment to simplify
the reasoning. This problem is significantly different from classical cooperative planning due to the
requirements listed below:

– limiting information disclosure to other agents, respecting each agent’s private preferences,
and keeping them undisclosed;

– integration of trust model [16] and methods of reasoning about competitive and adversarial
agents,

– stability - we want the solution (plan) to be stable even if a trustworthiness or availability of
partner agents changes slightly;

– efficiency - we want to be able to find a task decomposition and provisional allocation within
reasonable time and with a relatively small number of messages.

At first, we need to update the trust model presented in Chapter 5 to better integrate it with
social model and prepare it to be used as a valuable input for planning algorithm. Figure 7.3 presents
the differences between use of the model as presented above – trusting decision is taken on each agent
independently on the context, using only the self-trust as a parameter. In this figure, we can see that
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the trust model is tightly integrated with social model elements that are used as a primary planning
input, furthermore, most of the restrictions in the planning model that follows use trust in agents or
actions as an input to ensure reasonable team selection and adaptation to local (action dependent)
trust levels.
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Fig. 7.3. Evolution of the model from the original, simple version, towards a more complex, better integrated
version.

The algorithm we present can be compared to abundant previous works in the MAS logistics
area [21]. Enhanced Contract-Net-Protocol as defined in [28] and further extended towards practical
application by [55] achieves the same result using the negotiation between coalition leader and
perspective members. When the perspective coalition leader wishes to solve the task, it asks other
agents to cover the task completely or at least partially. Agents submit their bids, the best ones are
selected and provisionally granted the task. The rest of the task is auctioned again and new auctions
are organized until the whole task is covered. If the remaining task can not be covered, the algorithm
must achieve consistency by backtracking – revocations of provisionally granted tasks and auctioning
new ones. Even if we have a unique coalition leader, the planning problem is completely decentralized
and requires intensive communication. Consequently, this approach presents performance problems
when it prepares the initial plan in large state spaces – even if such planner compares favorably with
humans [56, 36], it can be easily beaten by mathematical programming techniques if we are able to
formulate the problem appropriately.

On the other hand, the agent approach brings more flexibility than mathematical programming
as the agents may combine many sources and types of knowledge to prepare the plan, each agent
contributing its knowledge, reasoning and resources. Agents do not need to be aware of each other’s
mental states, provided that they are syntactically and semantically interoperable.

Presented approach here is an attempt to integrate classical artificial intelligence and operational
research ’heavy-duty’ solvers in the contest of multi-agent systems. We argue that the abstract models
of collaboration in agent systems as they are now used within the multi-agent system community have
severe drawbacks – they are well suited for simple reasoning and limited amount of knowledge, while
little scalable. Their performance tends to degrade with increasing problem complexity and shift the
focus from qualitative to quantitative reasoning. Therefore, we propose that the AI/OR techniques
are a very good fit for agent reasoning due to their high performance and little or no scalability
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problems. The traditional problems related to their application – restrictive applicability conditions
(e.g. linearity) are solved by modern methods [15] and on the other side, acquaintance models [52]
provide the necessary knowledge inputs for the model, as well as an efficient mechanisms for its
maintenance. As the mechanism we propose is intended to function in adversarial environments, we
need to augment the social model with trustfulness information, using one of the available trust and
reputation models: [62, 16, 63, 37] and others [60].

Such trust mechanism must comply with following requirements: (i) trust and reputation must
be tightly integrated with the planning mechanism, (ii) model must be robust with respect to
environmental noise (natural failure), (iii) the model inputs must be compatible with the observed
plan outcome.

The following section provides the formal statement of the planning problem we are trying to
address, in the Section 7.5 we describe the planning algorithm, a key contribution of this phase of
work. As mentioned earlier, this algorithm consists of local planning algorithm (see Section 7.5.1),
local plan evaluation (see Section 7.5.2), coherence and verification (see Section 7.5.3) followed by
plan execution. In Section 7.5.4 we discuss some properties of the designed algorithm.

7.4 Formal Problem Statement

In the logistics planning problem we consider, we address the transport of goods from initial to
terminal location using the resources belonging to self-interested and potentially adversarial agents.
Therefore, we must select appropriate routes from the plan base, combine them and allocate resources
to the tasks in the plan in order to maximize the expected amount of delivered goods. In the formal
problem presentation below, we present the problem from the perspective of the coalition leader –
the agent denoted A0 that needs the cargo to be transported and organizes a coalition to carry it.

Formally, we follow the approach proposed by [77] and instead of decomposing the plan into
the action-state graph, we will describe it using actions and objectives (called objects in [77]).
Therefore, we will define an abstract plan (e.g. route plan) as a directed bipartite graph, where
one side is composed of objectives (typically corresponding to locations), defined by the set O =
{o0(initial), o1, on(terminal)}, with each member defined as oi = (preroi , allowsoi), where both the
preroi

and allowsoi
are subsets from the Ac, while the other graph side contains actions (transports)

linking the objectives, defined in the set Ac = {a1, a2, ...am}, where again ai = (prerai
, allowsai

) and
sets prerai

and allowsai
are subsets of O. By definition, we always start from a single initial objective

o0 (with no prerequisites: prero0 = ∅ ) and terminate in a a terminal objective that corresponds to
the achieved goal state: allowson = ∅ . This formal simplification doesn’t reduce the generality of
our approach - in case of need, we may define formal zero-cost actions from/to the initial/terminal
objective.4 Besides the structural information, we also keep Θai

for each action – an estimate of
normal action trustfulness as obtained from the trust model.

Batches constitute the cargo that is transported. For the purpose of planning, each batch pi,
from the set P is defined by its size size(pi) and type (liquid, bulk, etc...) that defines the resources
that may carry it. By definition, all batches can be split and re-assembled during transport. In such
case, we denote p

aj

i the part of the batch allocated to action aj .
The transport problem is being solved by agents from the set Ag = {A0, A1, ...Ak}. As already

suggested, the problem is defined by agent A0 who seeks help from other agents in the community
– this agent is a coalition leader. Each agent Ai is characterized by its trustfulness ΘAj (Ai) as it is
perceived by agent Aj , and its distrustfulness ∆Aj (Ai) = 1−ΘAj (Ai). (see Section 5.4 for details)

Agent is therefore modelled by coalition leader the as a tuple Ai = (ΘA0(Ai), resA0(Ai)), where
the set resA0(Ai) models leader’s knowledge about agent’s resources.
4 Therefore, in our graph, the nodes are defined as Ac ∪O, while the directed edges describe the relations

expressed in allows and prer sets of each action or objective. We may also note that the global state of
the system is defined by the state of all objectives.
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Besides trust, each agent controls one or more resources as defined in its set resAi . All resources,
regardless of the agent they belong to belong form a set RA0 = {rAi

1 , r
Aj

2 , r
Aj

l }, where the super index
of each resource denotes the agent to which this specific resource belongs. Each resource is described
by a tuple r

Aj

i = (Aj , allowedri
, prri

, capri
), where the Aj denotes the owner agent of the resource,

allowedri
is a set of actions (transports) to which the resource can be assigned, prri

is a set of batch
types it can carry and capri

denotes a capacity of the resource.
Tasks are a result of the planning process. They form a set T = ta1 , ta2 , ..., tam

, and each
task corresponds to one action. Task is defined as tai = (batchtai

, comtai
), where batchtai

is a set
of batches transported in the task and comtai

is a set of commitments – each commitment5

c = (ai, Aj , r
Aj

k , pai

l , cap) is an assignment of a specific resource rk (and consecutively its owner Aj )
to one partial batch pai

l from the set batchtai
and cap determines the capacity that is to be assigned.

If the rk capacity allows it, one resource can be committed to more than one batch/action and a
single partial batch pai

l can be covered by several commitments – in such case, we denote cap(rai

k )
the aggregate size of all commitments from the task tai

to which the resource rk is committed.
Commitments of resources relative to a single task define a team from the set E = ea1 , ea2 , ..., eam

.
The team is simply a subset of the set Ag containing all the agents contributing their resources to
the task tai

. Coalition Co is then simply defined as a union of all teams from the set E.

Quantity Definition Set

Objective oi = (preroi , allowsoi) O
Action ai = (prerai , allowsai) Ac
Batch pi = size(pi) P
Agent Ai = (ΘA0(Ai), resA0(Ai)) Ag
Trustfulness ΘA0(Ai) ΘA0

Distrustfulness ∆Aj (Ai) = 1−ΘAj (Ai) ∆A0

Resource r
Aj

i = (Aj , allowedri , prri , capri) R
Task tai = (opertai

, comtai
) T

Commitment c = (ai, Aj , r
Aj

k , pai
l , cap) C

Team ea1 E
Coalition coalmem Co

Table 7.1. Problem notation summary.

7.4.1 Public, Semi-Private and Private Information

Sharing the information about resources, plans, goals and intentions is significantly different from the
cooperative agent systems. In adversarial environments, agents must seriously consider the possibility
of information misuse and try to find the equilibrium between minimum information disclosure and
cooperation and planning efficiency. Therefore, following [51] and respecting the definitions provided
above, we recall three types of information:

Public information is accessible to any agent in the system. It includes information about agent
identity, existence, location and basic annotation of provided services - type of the resources
resA0(Ai) it offers, but without any information concerning their capacity, number or restrictions.

Semi-private information facilitates the planning process. It is mutually shared within groups of
trusted cooperators that collaborate frequently and enables them to prepare the plans easier
than by negotiating through all possible options [53]. For each agent Ai, we assume that it

5 Formally, until being evaluated and updated by bidding agents, commitments must be regarded to as
mere commitment opportunities.
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includes the information about its resources (capacity) aggregated by type and including the
restrictions regarding their use on the set Ac.

Private information is reserved only to the owner agent and never shared with anyone else - it
contains the detailed information about its resources, including their individual capacity, re-
strictions, locations and other information.

Note that the sets R as perceived by various agents are not identical due to the fact that they
don’t have the access to the same information.

Typically, agents will disclose aggregate or approximate information about their resources as
a semi-private information. Such compromise provides enough knowledge for the first stage of the
planning process, and detailed task allocation is then finalized in course of negotiation without
exposing more data than necessary.

7.5 Algorithm Description

This section provides an overview of the planning algorithm we suggest, combining the social model
and linear programming planner with focused and well-targeted negotiations in the later stages of
the process. The complete planning process is below and detailed in the remainder of this section.

1. Initial Planning: Team leader uses its social knowledge and planning capabilities in order to
prepare initial plan. This happens in two phases:
– abstract plan construction and
– task allocation to the agents.

2. Local Plan Evaluation: Initial plan is evaluated by the respective agents:
– initial plan is received by the perspective members,
– the members evaluate the plan and make an attempt to trade the commitments within teams,
– proposals are sent by members back to the leader.

3. Coherence & Verification: Proposals are included as an input for the detailed planning, that
ensures the plan coherence.

4. Plan Execution: Revised commitments are received by coalition members, may be swapped
and the plan is being executed.

Plan phases are also detailed in Fig 7.4.

7.5.1 Initial Planning

In the first phase of the plan, we assume that the coalition leader A0 has obtained a specification of
the goals to accomplish and is obliged to form a coalition with other agents in its social neighborhood
to accomplish it6. It uses its social knowledge about these agents to draft a preliminary plan in the
following steps.

Constructing the Abstract Plan. The first step is a preparation of the abstract plan – an
action-objectives bipartite graph capturing the relationship between initial and terminal objectives
(states) – typically covering alternative solutions. The graph must contain at least one path con-
necting the initial and terminal objective – if such path can’t be identified, agent A0 is unable to
solve the planning problem.

Constructing the abstract plan is a computationally exponential problem in complex domains.
Recent advancements in the field of AI planning provided very efficient techniques for constructing
the plans in reasonable amount of time such as GraphPlan [45] or SAT-Plan [7]. These techniques
implement a sophisticated breadth-first search based on expansion of the bipartite graph or iterative
6 In this report, we only consider a single problem planning, while the other problems interact with the

current one through the use of resources from the set R and by using the same trustfulness values ΘA0 .
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Fig. 7.4. Overview of the protocol phases: Agent A0 is a coalition leader and has decomposed the global
task into three tasks and three teams.

propositionalization of the planning problem. There is an interesting property of GraphPlan that
the algorithm can find in a polynomial time whether there exist a solution to the planning problem.

Task Allocation. Once an acceptable abstract plan is established, leader proceeds with the (ii)
allocation of batches and resources to individual actions in the plan, while respecting the constraints
defined in the objectives. Note that for sake of computational efficiency, some actions and objectives
from the abstract plan can be removed during this phase if there are no resources or batches to
allocate to them. To allocate the others, coalition leader solves a fuzzy linear programming problem
that performs the allocation using the data from the social knowledge and goal specification.

Planning Problem Definition. Use of the fuzzy linear programming (FLP) either provides an
acceptable rough task allocation T , or identifies a constraint that prevents the agent from finding
the solution, a feature that is crucial in changing environment.

The constraints we define for the problem are the following. The first equation expresses the
node equilibria - conservation of goods in each node.

∀oi ∈ O \ {o0, on},∀pj ∈ P : (7.1)∑
ak∈prer(oi)

size(pak
j ) ·Θak

=
∑

al∈allows(oi)

size(pal
j )

where the Θak
represents the estimated action trustfulness (see Section 5.4) taken from the trust

model (e.g. delivery ratio in our case) - it allows us to model the probable losses in the actions from
the set prer(oi). Depending on the context, the coefficient may range from 0 (no hope of delivery
and therefore no need for subsequent transport) to 1 , resulting in the same amount of resources
allocated for outgoing cargo.
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The initial node has a simpler relation, declaring that we can’t take away more cargo than
available:

∀pj ∈ P : size(pj) ≥
∑

al∈allows(o0)

size(pal
j ) (7.2)

while the terminal node doesn’t introduce any constraint.
Furthermore, for each action ai (elementary transport) and each batch pj , we must ensure that

the commitments cover the whole partial batch pai
j ( size(pai

j /leqpj) due to the possible parallelism):

∀ai ∈ Ac,∀pj ∈ P : pai

l =
∑

c∈comtai
:batch(c)=p

ai
l

cap(c) (7.3)

then, we must also make sure that no resource is used beyond its capacity:

∀ri ∈ R : cap(ri) ≥
∑

aj∈Ac

cap(raj

i ) (7.4)

besides these restrictions, we need to set-up the utility function for which we optimize:
Utility functions are highly domain dependent and we present the one we use as an example –

we maximize the amount of the cargo delivered to the target given the fixed initial batch sizes;

Um = α ·
∑
pi∈P

size(pon
i )− β ·

∑
cj∈C

size(cj)∆Aj
(ag(cj)) (7.5)

, where pon
i denotes the part of the batch pi delivered to the terminal objective and ag(c) the

agent committing to c.
We minimize the expected amount of the cargo lost (second sum) and we balance the cost of losses

and value of delivery (first sum) by setting the constants α and β to domain-appropriate values.The
ultimate goal is to allocate the resources of the coalition members to cover most of the delivery, while
minimizing the risk of the attack. In an alternative, goal-driven utility function, we may minimize
the size of the initial batch while covering the predefined request from the terminal locations. This
implies also a formal redefinition of the relation 7.2 to cover the terminal node instead.

Transformation of the fuzzy linear problem into the classical one is discussed in Section 7.6.2.
Once the solution of the planning problem is identified, leader determines all perspective coali-

tion members (owners of resources assigned to various tasks) and queries each perspective member
whether it is capable and willing to solve the assigned tasks in a given coalition/team. Therefore,
each perspective coalition member Ai is sent a following structure: cmaAi = (A0, coalmem, assign),
where A0 is a coalition leader, set coalmem lists all coalition members and set assign lists the
relevant information about tasks the agent’s resources are assigned to, defined as (eaj

, comtaj
(Ai)),

where j is an action (task) index and comtaj
(Ai) are commitments suggested to agent Ai on task

taj .

7.5.2 Local Plan Evaluation

When the coalition members Ai (selected by the leader in the previous step) receive the coalition
proposals from the leader, they must use their private knowledge to create the bid reflecting their
preferences and local situation. Several classes of problems must be addressed: (i) agents must
decide whether they trust the coalition leader and members sufficiently to cooperate with them,
typically putting emphasis on their trust in the leader (ΘAi

(A0)) and agents within the same teams
(∀ek : Ai ∈ ek∀Aj ∈ ekΘAi

(Aj)). If the agent is confident enough with the coalition and proposed
commitments, it will try to assign its resources to its commitments.
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At this level, we handle several issues that are ignored by the leader’s first-level planning –
resource granularity (unknown to the planning agent due to the privacy issues) and relations between
the resources assigned to different tasks. In the first round, each agent assigns its resources to the
commitments that are the best fit for available resources, trying to cover all commitments. Then, it
will offer the excess capacity of the resources assigned to the task taj

to all members of the team eaj

using the multi-phase auction mechanism described in [28]. This step is designed to eliminate the
resource allocation inefficiencies that are due to the possible leader’s lack of knowledge about actual
resources or a side effect of selected planning method. More formally ( see also Fig. 7.5), to start the
the negotiations, each agent Ai working on task taj

broadcasts a CFP message containing its free
capacity to all team etaj

. If the other team members are interested in using this capacity for the
task they were allocated, they submit their bid. Agent Ai selects one or more bids and answers them
with a temporary grant, making them binding for the bidders; other are temporarily refused. When
the agent Ai participates in several teams, it can now reshuffle its resources between the tasks to use
them in an optimal manner. Once the resource reallocation is terminated, all compatible temporary
grants are confirmed, while the others may be refused (In case we the agent has replaced the original
resource with a lower-capacity one.). If appropriate, agent can now offer the new free capacity for
trading using the same protocol.

Team 2
Team 1

Ag 1 Ag 4 Ag 5Ag 2 Ag 3

CFP 2CFP 1 CFP 2
CFP 2

REFUSE
PROPOSE

PROPOSE

PROPOSE

Process

T-ACCEPT

T-ACCEPT
T-ACCEPT

REJECTACCEPT
ACCEPT

Fig. 7.5. Use of the ECNP to allocate agent’s resources across two different teams. Agent A1 first temporarily
accepts the offer from A5, but later on finds a better resource allocation and prefers to commit larger resource
to team 1. Therefore, it rejects the bid from A5.

Note that the auctioning and negotiation takes place only within the single task team, therefore
minimizing the knowledge dispersion and communication load. On the other hand, agents may there-
fore miss a better task allocation. Once the negotiation is finished, all team members prepare and
submit their answers to the coalition leader. The answer is composed of by the list of commitments
that are actually binding for each agent, but may differ from those originally assigned to the agent
as: (i) the agent is not always able to cover the whole assigned commitment and commits only to
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a part of the original commitment or (ii) it notifies the coalition leader about the transfer of the
whole commitment or its part to other coalition member (this member lists this commitment in its
turn as covered).

When the agents submit their binding commitments to the coalition leader, they have an alter-
native to offer the free capacity of the resources they’ve allocated to the task to the coalition leader
- the leader may include use it to cover other batches from the same task, as specified by relation
7.6. While this remains an attractive optimization feature, this approach has two major drawbacks
– the leader can easily guess the capacity of agent’s resources and the free resources can not be used
on another task. Therefore, we consider the member’s reasoning and negotiation within teams as
crucial part of the algorithm, effectively merging the decision-theoretic approach from the first and
third step with traditional agent approaches.

7.5.3 Coherence & Verification Phase

In this phase, coalition leader receives the answers from the coalition members and must re-combine
them into a globally coherent plan. As the initial planning has produced a coherent plan, the plan is
coherent when all proposed commitments were covered by members. If not, the leader must add all
updated commitments/refusals from the agents to the initial plan and perform the new calculation
to make sure that the condition 7.1 is valid for the final plan.

Updated commitments are included as follows (refusals or previously unassigned commitments
are considered as commitments with 0 capacity):

∀ai ∈ Ac,∀rj ∈ R : cap(rai
j )prop ≥ cap(rai

j )final (7.6)

In this phase, the FLP algorithm may be unable to find a solution. In this case, besides aban-
doning the project altogether or trying to recruit more agent, coalition leader may simply re-state
the project with larger teams assigned to the tasks; even if some team members have no initial pro-
posed commitments, their inclusion opens more negotiation options. On the other hand, when many
agents refuse to commit any resources to some task, coalition leader may deduce that some other
team member is probably considered as dangerous and be more restrictive in collaborator selection.

If the coalition leader manages to find an acceptable planning outcome, it prepares the final
commitments (with the quantities assigned that are less or equal to the binding ones proposed by
members) and re-submits them to the coalition members.

7.5.4 Plan Execution

As the proposals by the agents were binding, coalition members shall be all able to start performing
the assigned tasks immediately. Alternatively, when the final commitments are lower than the ones
they have proposed, they may change their resource allocation or trade the assignments with their
peers in the team in the same way as in the Local Plan Evaluation phase, provided that they manage
to honor their commitments.

7.6 Algorithm properties

In this section, we will analyze the above-described algorithm and discuss several interesting prop-
erties it presents: computational efficiency, preservation of private information and stability of the
solution with respect to environmental perturbations.
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7.6.1 Overall Characteristics

The claim that the algorithm we propose differs from previous approaches due to the following
properties:

– Reduced communication is a result of the use of the social knowledge in the initial planning
step of the algorithm. Instead of several rounds of auctions, action decomposition and backtrack-
ing, coalition leader uses its social knowledge to compose balanced task teams and pre-assign
pre-commitments to each potential coalition member.

– Operation-research integration with negotiation and cognitive methods is natural and seam-
less: output of most trust models in existence today can be transformed into the fuzzy number-
form and this representation fits well into the context of modern FLP methods as shown in
Section 7.6.2. On the other hand, the individual team members don’t need any notion of FLP
techniques - they only reason about the coalition, their teams and negotiate within their teams
to achieve optimal resource allocation.

– Contraction of the solution space is another key feature – each step of the planning, centralized
or distributed, reduces the solution space. Initial planning performs the greatest reduction, as
the actions/tasks are selected, resources pre-allocated and agent teams created. Local planning
phase then further clarifies resource allocation and team composition and the results of this
phase are incorporated as additional restrictions for the FLP planning problem solved in the
coherence and validation phase – we effectively ensure that any overall solution will respect the
commitments received from coalition members and can be executed. Optional re-allocation step
doesn’t break our assumptions, it only permits team members to trade resources in a situation
where the batch sizes may have been reduced. If the plan can not be implemented due to the
member refusal or resource incompatibility, the situation is detected in the coherence planning
step. LP method used identifies the interfering restriction and can direct the coalition leader
towards plan reconfiguration. Therefore, in the global algorithm as suggested, we don’t allow any
backtracking (except the team-scale negotiation), increasing the outcome predictability.
On the other hand, the algorithm as presented doesn’t guarantee that the result it returns will be
the optimal plan. We don’t consider this as a serious drawback, because none of the comparably
efficient algorithms currently in use can guarantee such result.

7.6.2 Stability of Flexible & Fuzzy Linear Programming

One of the important properties of the trustfulness ΘA0(Ai) (and distrustfulness ∆A0(Ai)) values is
their uncertainty, emphasized by the fact that they are modelled as fuzzy numbers. There are two
approaches how to use these values in the LP algorithms: either to solve a flexible linear programming
problem, or to defuzzyfy the values and solve a classical LP problem.

Flexible linear programming techniques [15] that work with fuzzy coefficients provide us with a
unique feature - a stability of the solution with respect to small changes of coefficient (e.g. trust-
fulness) values defined as symmetrical triangular fuzzy numbers. Problem formulation remains the
same, but we must solve a non-linear optimization problem in order to obtain the solution – a major
disadvantage of the approach. On the the other hand, once we have an appropriate solver, we may
effectively adjust the stability of the solution by varying the width of the trustfulness values – by
restricting their width, we approach the unstable classical linear programming problem, while the
widening of trustfulness representation ensures the stability with respect to bigger perturbations.
This ability is a very desirable feature when the agents encounter an intelligent adversary in an
unknown environment – agents can adjust their planning to be robust when they still gather the
information about the environment and reduce the predictability of their behavior in later phases.
The shape representing the trustfulness ΘA0(Ai) supports this adaptation, as it ”narrows” with the
increasing number of data.



7.7 Conclusions and Future Work 79

In the alternative approach, ΘA0(Ai) and ∆A0(Ai) must be defuzzyfied before they are inserted
into the planning constraints of the normal LP problem. Defuzzyfication to use depends on the
definition of ≤ relation between fuzzy numbers – as we follow the FLP → LP transformation method
method detailed in [15] we use the center of gravity to compare two fuzzy numbers. This relation
between fuzzy numbers returns a crisp output. During the transformation, we replace the fuzzy
numbers in the constraints and utility function by the center of the core of the trustfulness values
and solve the resulting problem.

We may also defuzzyfy the ΘA0(Ai) and ∆A0(Ai) using the center of the core method - this
approach is more sensitive to the noise, especially with limited number of data, but as the agent
gathers more experience, it converges to the center of gravity method due to the shape of the
trustfulness function ΘA0(Ai) as defined in Section 5.4.2.

7.7 Conclusions and Future Work

In this section, we have presented a combined planning algorithm that can be used to efficiently create
a shared plan in an adversarial environment, featuring only a limited and controlled information
disclosure by self-interested agents. Adversarial behavior of agents and environmental reasons of
failure (actions with low action trustfulness) can be detected and provide an input for the embedded
trust model, that in its turn provides an input for further planning.

One of the important open issues of this research topic is the concept of plan diagnosis. Plan
diagnosis [77] is important to achieve long-term efficiency by elimination of untrustful cooperators
and bad actions (paths). We can not assume that the state of the problem is observable – implicitly,
we assume that only the initial and terminal objective status are known by the coalition leader and
that the state of some of the intermediary objectives may be known. Integration of the latest results
from the monitoring selectivity problem [39] into a trust model update is a challenging problem for
future research.

Another key challenge for the future research in this area is to investigate the plan execution
phase and allow intelligent replanning. Re-planning can occur as a result of a coalition leader detects
a failure in completion of one or more commitments or upon a request from the coalition members. If
these commitments fully or partially pre-condition other tasks (and their commitments), it may be
advantageous to re-plan the plan in order to eliminate inefficient future commitments. Such operation
is analogous to coherence phase (see Section 7.5.3), but for each commitment with known outcome,
we can fix the commitment size to the real delivered value, or limit it by using the information
about partial deliveries/losses. In the same manner, the agent can react when some task was more
successful than expected and more resources are necessary for subsequent transport. Integration
of the classical work on joint commitments [18] and shared plans [33] as well as various penalty
mechanisms allowing agents to deliberate on dropping the commitments is an important component
of the future research in this area.
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Conclusions and Future Work

In this document, we have presented the results of the research project: Advanced Agent Methods in
Adversarial Environment funded by AFRL/EOARD under the contract number FA8655-04-1-3044.
The project has both engineering and research results, as presented in respective chapters. This
report has been structured to reflect the results from all research phases, starting with fundamental
issues – formal model of adversariality, until now missing in the agent community and formal model
of inaccessibility that were defined and published.

These results enabled us to work on related practical research problems: the definition of the
trust model that is suited for autonomous lightweight devices in potentially adversarial environment
– our model provides unique features like noise robustness, automatic environmental adaptation,
uncertainty-inclusive reasoning and being iterative, it is very computationally and data efficient. On
the other hand, it is sufficiently rich to be used as an input for planning mechanisms.

We have also analyzed and proposed several inaccessibility solutions, most notably the stand-in
agents that are well suited for non-collaborative environment where the potential middle agents are
not necessarily trusted. Furthermore, as we have noted that the efficiency of inaccessibility solutions
is a key enabler for their use, we have defined a universal middle agent architecture integrated with
social-dominance-based optimization model. This model enables fast adaptation of middle agent net-
work (regardless of the agent type) using only local knowledge – no central coordination mechanism
is necessary and the network still adapts to the changes in the environment to reach the optimum
number of agents relatively fast. Message/knowledge routing is also optimized in a similar manner,
using the virtual micro-payments that guide the system self-optimization.

Both the trust model and inaccessibility solutions were rigorously verified in the experiments.
The results of these experiments provided us with the knowledge necessary for the integration of
both models into a coherent system, solving the distributed logistics problem in an adversarial and
inaccessible environment. This problem is implemented by a specific humanitarian relief scenario
realized in ACROSS framework in A-globe platform. The core feature of this system is the planning
algorithm that integrates negotiation and fuzzy linear programming based planning into efficient
system that is well suited for adversarial environments – trust both in the agent and actions is a
crucial planner input, as well as the social knowledge. Both the classic social knowledge and trust
model data is updated via the adaptive stand-in network, and the stand-ins are also responsible for
the goal identification.

All the development and the experiments were realized inA-globe multi-agent platform using the
ACROSS scenario. During the project, the A-globe platform 1 was significantly enhanced to handle
bigger number of agents and increased message flow in the simulated community. The platform,
in a conjunction with the scenario were successfully presented and were awarded two awards at
1 Whose development was originally funded by AFRL/EOARD project number FA8655-04-1-3044.
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international conferences: CIA 2004 System Innovation Award and The 2005 IEEE/WIC/ACM
WI-IAT Joint Conference Best Demo Award.

This project has delivered well characterized and tested mechanisms that are available for reuse:
the trust mechanism, generic stand-in self-optimizing architecture and planning mechanism for ad-
versarial environment. Some of the considered options for future extensions are:

– Teamwork in adversarial environment based on an efficient planning can be used not only in
logistics domain, but can be also used in a more general manner: flexible team formation between
UAVs that provide protection, communication and observation to ground vehicles is one of the
considered application domains. Such technique would allow autonomous tasking and flight of
the UAVs (and also planning for ground vehicles), reducing the load on the operator and allowing
it to handle exceptional situation only.

– Trust model is being developed to integrate better reputation mechanism, information decay in
time, context-dependent trust and other important concepts. All these techniques will be com-
bined with the core model only if appropriate and necessary, as they increase the computational
complexity. Currently, we are investigating the use of the model in the embedded security system
for network infrastructure and the extensions necessary for this domain.

– Stand-in infrastructure will be further developed as a secure method how to ensure synchro-
nization in an inaccessible environment. Emphasis will be put on the optimization mechanism
fine-tuning. We want it to automatically adapt not only to changes in the environment, but
also to perform meta-adaptation: adaptive mechanism will change its parameters to match the
dynamics of the environment to avoid local overfitting or insufficient adaptation.

– Social dominance models for optimization that are currently used for stand-in network
optimization can be used in completely different domain altogether. One of the possible appli-
cations is a development of a robust reputation mechanism to counter the strategic behavior in
collective trust modelling. Another application is a self-organization of flight formations between
autonomous aerial vehicles to facilitate airspace management and deconfliction.

– Research in formal models of adversariality and their practical applications in negotiation
and adversariality detection.

– Research in formal models of accessibility and network characteristics, using the results from
the random graph theory. These results will be useful for the evolution of stand-in optimization
mechanism.
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Progress in A-globe Multi-Agent Platform Development

In this section will be in brief described A-globe, an agent platform designed for fast prototyping
and application development of multi-agent systems. A-globe provides the same level of services as
JADE, COUGAAR, FIPA-OS, JACK and in addition has some special features focused on simulation
of the real-world dynamic environment. The main focus of the A-globe developers has been given
to the following applications domains:

– simulation, especially simulation of the multi-agent environment and collective behavior of large
communities

– scalability, high-number of fully autonomous agents, that are loosely coupled with lightweight
infrastructure

– agent migration, persistence and code and state migration within the communication network
as much as physical reallocation of the computational host and thus modelling of partial and
non-permanent communication inaccessibility [49].

The platform provides functions for residing agents, such as communication infrastructure, store,
directory services, migration function, deploy service, etc. Communication in A-globe is very fast
and the platform is relatively lightweight.

A-globe is suitable for real-world simulations including both static and mobile units (e.g. logis-
tics, ad-hoc networking simulation), where the core platform is extended by a set of services provided
by Geographical Information System (GIS) andb Environment Simulator (ES) agent. The ES agent
simulates dynamics (physical location, movement in time and others parameters) of each unit.

A.1 System Architecture

The system integrates one or more agent platforms. The A-globe design is shown in Figure A.1. Its
operation is based on several components:

– agent platform – provides basic components for running one or more agent containers, i.e.
container manager and library manager;

– agent container – skeleton entity of A-globe, ensures basic functions, communication infras-
tructure and storage for agents;

– services – provide some common functions for all agents in one container;
– environment simulator (ES) agents – simulates the real-world environment and controls

visibility among other agent containers (section A.2);
– agents – represent basic functional entities in a specific simulation scenario.

Simulation scenario is defined by a set of actors represented by agents residing in the agent
containers. All agent containers are connected together to one system by the GIS services. Beside
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Fig. A.1. System Architecture Structure

the simulation of dynamics the ES agent can also control communication accessibility among all
agent containers. The GIS service applies accessibility restrictions in the message transport layer of
the agent container.

A.2 Simulation Support in A-globe

While designing the simulations in A-globe platform, we use agents not only to play roles in the
simulated world - actor agents but we also use them to implement the world where the actor agents
act. The agents used for the world simulation are all located in a dedicated master container and
are called Environment Simulation agents.

These agents only rarely use messages to communicate with actor agents. Instead, they communi-
cate with topic messaging - container-to-container messaging specifically reserved for environmental
simulation.

Topic messaging is managed by GIS Service - a special service that is a part of the A-globe
platform and can be started in a container by specifying an appropriate startup parameter. This
parameter value determines whether the container is a master, server side container or a client -
normal container with actor agents.

Client agents subscribe with GIS client service to receive various topics. If such a topic is received
by the container, it is distributed to all subscribed agents. Note that all agents in the container
receive the same value - this is appropriate in our opinion, as the environment perception shall be
identical for all collocated agents. In addition, the agents who wish to act on the environment can
submit topics to the GIS service. These topics are then sent to all ES agents in the master container
subscribed to receive the topic.

In the nominal configuration, each ES agent manages an internal model of the environment,
updates the model with the actions received from actors and submits the environment status to
actors in their containers. Each ES agent can handle one or more topics and one topic can be
handled by more then one agent. Specialized ES agents can also subscribe to receive local topics
from other ES agents. Typically, many specialized ES agents can receive position information from
position agent and use this data to submit appropriate localized environment information to agents.

This approach scales fairly well with the community size. However, when the environment be-
comes more complex, it is often not economic to handle the environment simulation in the ES agents
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as the interactions become too cumbersome and internal models too complicated. In this case, the
server can use an appropriate GIS server with an ES agent wrapper for simulation purposes. The ES
agent(s) is then responsible only for obtaining the information from the appropriate layers of the GIS
server and submitting them to corresponding topics. The use of the GIS server is not without a cost
- the integration with wrapper agent is rarely flawless and shall be avoided for simple environments.

ES agent can be responsible for nearly any simulation layer, depending on the wishes of the
developers. However, a privileged place between ES agents is occupied by accessibility agents, who
control the existence of communication links between containers holding the actors. Their prominence
is caused by the fact that the platform messaging layer is integrated with these agents through
predefined topics and any attempt to send a message to an agent in an inaccessible container is
automatically unsuccessful.

There are several ES agents implemented and some of them are provided as a part of the A-globe
platform package for optional use:

– Manual (Matrix) ES Agent This agent provides simple user-checkable visibility matrix. The
user simply checks which containers can communicate together and which can not.

– Distance-based ES Agent This agent is a fully automatic environment simulator. It receives
positions of mobile agent containers representing mobile units in virtual world and automatically
controls accessibility between them. The visibility is controlled by means of the simulation of
the short range wireless link. Therefore each container can communicate only with containers
located inside the predefined radius limit. As the containers move, connections are dynamically
established and lost.

Other visibility agents can be implemented for each specific simulation, provided that they respect
the ontologies and protocols that apply for them.

A.3 New features and Enhancements in A-globe version 2.1

The agent platform A-globe ver 2.1 is a major feature release. The features listed in this section
are introduced in ver 2.1.

A.3.1 A-globe upgraded to the JAVA 2 edition 5.0

The JAVA 2 edition 5.0 [69] or later is required for running A-globe ver 2.1. New components
of A-globe agent platform use new JAVA language features, such as generics, enhanced for loop,
etc. A-globe platform also uses runtime JVM improvements, such as garbage collection ergonomics,
string builder, opengl, etc.

A.3.2 Library version handling

The Library Manager component is no longer integrated with the platform, but is now an integral
part of agent container.

Every new loaded library in A-globe container internally uses the library name constructed from
the original library name and SHA-1 hash [1] of the library content. The loaded library is automati-
cally labelled with unique version label constructed as ver{ver num in the container}@{container name}.
In such a way, two different libraries with same file name can be used in parallel within single A-
globe platform. The library can be removed before a class loader opens it. After opening, it can not
be removed from the runtime environment. It can be removed at A-globe restart.

A class loader is defined for each agent and service. If an agent/service doesn’t use any special
library, it usees a bootstrap class loader. The bootstrap class loader locates classes only in the name
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space defined in the path specified by the starting CLASSPATH parameter or manifest CLASSPATH
parameter in the JAR library used by java runtime. If an agent/service uses one or more specific
libraries, it has to define its own class loader which tries to load classes in specified libraries. An agent
specific class loader always prefers classes defined by the bootstrap class loader. Therefore, default
classes can not be ”overriden” - it has no sense to define own java.lang.String class because it will
never be actually loaded. In A-globe , each agent(service) class loader defines agent/service class
resolving name space. The migration process and the message transport layer always use respective
name space.

In one agent container, several agents with same main class but different class versions can run.
For example, there can be several migrating agents using examples.agent.migrating.MigratingAgent
main class, but each agent can use its own library with different class definition.

A.3.3 Message Transport layer

The previous release version of A-globe featured message transport component in agent container
only. All messages sent between two agent containers running in a single agent platform were sent via
TCP/IP stream. Now, the new platform-level message transport component ensures more efficient
exchange of these messages. This enhancement improves messaging speed between agent containers
within one Java Virtual Machine (single platform).

The message transport layer takes care that all message are serialized (marshaled) and dese-
rialized (unmarshaled) in the appropriate class name space depending on the sender and receiver
agent/service’s class loader.

Fig. A.2. Create new agent dialog with Class Finder results

A.3.4 Topic messaging

Topic messaging is managed by GIS Services - a special services that are a part of the A-globe
platform. Topic messaging were described in section A.2.

A.3.5 Class Finder

The Class Finder component of A-globe locates all available classes that can be loaded as
agent/service when new agent or service dialog is shown. It provides list of main classes for easy
startup of new agent/service. When an agent/service is defined in specific loaded library and that
library is necessary for its execution, the required library is specified behind the character ’@’ as
shown on figure A.2.
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A.3.6 Directory Service

The Directory Service provides extended white pages and directory pages services. It supports in-
accessible environment and uses visibility updates provided by ES Visibility servers. The service is
automatically started on every client container. Previous version of directory service is no longer
used in A-globe ver 2.1.

Fig. A.3. The Communication Analyzer

A.3.7 Sniffer Improvements

There are several enhancements in the sniffer agent since previous A-globe release:

– Message history length – this parameter is useful in large-scale scenarios where thousands of
messages are send in short time period. Unnecessary outdated messages in the history requires
more memory for sniffer agent.

– Agent/service address filter – every new agent or service actor address known by sniffer agent
is matched against that regular expression. If test is positive, the actor is automatically labelled
as visible in the message detail window. This feature is useful when someone wants to sniff only
message between a limited group of agents and services, e.g. between transporter agents. Default
filter is set to the others, showing all agents and messages.

– Browsing through the conversation – two new buttons are available in the message detail
window for moving forward and backward in the conversation history.

A.3.8 Communication Analyzer

The Communication Analyzer provides view of the intensity of interactions between agents, see
figure A.3. Communication Analyzer presents selected agents, filtered by a regular expression, in
a circle. Messages exchanged between agents influence the color and width of the links between
communicating agents. In order to keep the image updated, old messages fade away progressively
and only the recent ones are visible. The communication analyzer agent can run only in the server
container likewise the sniffer.
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A.4 New features and Enhancements in A-globe version 2.3

Improvement of A-globe message transport layer – low level message processing and trans-
mission in the A-globe message transport layer has been changed so that the A-globe messaging
in byte mode is faster. The A-globe message envelope uses externalization with special String
encoding instead of standard serialization. Externalization may be up to 40% faster than object
serialization [71].

Extension of visualizer communication protocol – the VisioConnection module used for
communication with external visualizers can receive incoming commands from visualizers and dis-
tribute them back to the system via VisioCallbackListener. This feature can be used in situation
when a detailed information about specific object needs to be updated in the external visualizers
only on request. This improvement rapidly decreases bandwidth requirements between A-globe and
visualizers. We use this feature in the Air Traffic Simulator where the detailed information about
future flight plans are shown only for limited group of planes, and the updates of detailed flight
plans are distributed only for selected planes.

New DataAnalyzer tool – the DataAnalyzer tool is useful tool for tracking numeric values
that evolve in time, for example while debugging of scenarios or preparing of measurements. Any
agent can send its own data for analysis. Data is transmitted to the analyzer by submitting topic
TOPIC TEST DATA to the server with content AglobeParams. Example of sending data can be found
in the method aglobe.agent.dataanalyzer.RandomDataAgent.RandomTimer.run(). Agent is able
to show various data from more then one agent simultaneously and filters are available to select only
the data that are of interest to observer. This agent runs on master container.

Fig. A.4. A-globe DataAnalyzer tool

A-globe ontologies changes – ontologies used internally by A-globe were moved from package
atg.ontology to aglobe.ontology. The ontology Param and Params were renamed to AglobeParam
and AglobeParams to remove many ambiguous conflicts between A-globe internal and user-defined
ontologies. The library ontology.jar is no longer necessary for running A-globe and there is no
circulare reference between ontologies and A-globe anymore.

Changed service shell concept – now an agent specifies an service shell owner during request
for a service addressed to the ServiceManager. The agent no longer needs to take care of unsub-
scription, deregistration or disconneting of a service before migration or agent termination, as well
as reconnection, resubscription and registration immediately after the migration or cloning.

Agent class update and extension – we have added several convenience methods to simplify
the usage of agent cloning/migration and logging functions. An agent who wants create its clone
on the same or other agent container needs only call clone method with specification of the name
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of cloned agent and destination container address. Moreover, the migration procedure of the agent
was updated to make it faster. There are new logger methods for easy creation of log messages from
within the agent. To create a log message, the agent needs to call logInfo or logSevere method
with single String argument. The logging method automatically appends creator’s agent name with
container specification and timestamp of the message.

Removed bug in Directory Service – in the previousA-globe release there was a infrequently
occurring problem with distribution of updates when there was more then one receiver of a set of
service providers matching with matching filter. This problem was corrected in the current version.

A.5 New features and Enhancements in A-globe version 2.4

Recently, we have implemented several new features into the platform: A-globe web interface –
we have created a specialized service that functions as a web server for agents and containers running
on the platform. Using this interface, user is able to manage running agents, start new agents, or
load new libraries to the running A-globe even from remote location. Agents themselves can create
their web pages and are able to post the information on this web server, to the location determined
by their container and name. They can also receive the user input from their web pages instead of
their GUI, using the standard HTML forms. CSS is supported.

Related feature is the bidirectional flow between the 3D visualizer and agent: now, agents
can request the data from the visualizer, including the virtual camera view from their environment,
actually seeing what happens in the simulated environment. This mechanism allows agents to post
this information on their web page in (nearly) real-time, providing an access to the 3D information
for remote thin clients.

The implemented mechanism can also be used to obtain richer user information about individual
agents – now, the trustfulness of other agents is submitted to the 3D visio by evaluating agent and
can be visualized by clicking on agent name in the container panel.

Another major improvement is an inclusion of several FIPA protocols into the A-globe release.
These protocols were developed as a part of ACROSS scenario and have now become an integral
part of the platform.

Besides usual bug corrections and performance enhancements, two other features are worth men-
tioning: it is now possible to run the system in a single platform mode by using the recently
added parameter -noListen. This will deny the use of network interface and the performance of the
system increases dramatically as the overhead is reduced. On the downside, this mode is useful for
single-host running scenarios only1. The other feature is a possibility to prohibit the store modifi-
cation by the system, actually fixing the same agent setup through the runs. This is useful for
the simulations where the consistency between successive experiments is a major requirement.

A.6 Future development possibilities of A-globe

In this section, we present several options of future A-globe development. However, in contrast to
other similar sections in this document, we don’t necessarily intend to pursue all the possibilities
listed herein. The goal of this section is to stimulate the discussion and to obtain feedback of the
user community. If some of the points below are of the interest to you, please let us know.

Lightweight version of A-globe – we can design a lightweight A-globe version that may run
on mobile devices with very restricted resources (limited memory, slow CPU) such as mobile phones
or handhelds. This version of A-globe should run on Java 2 Platform, Micro Edition [70]. It will
retain basic compatibility with main A-globe version – an agent running on this lightweight version
1 3D Visio connection and web service functionality is not affected by the parameter.
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of A-globe will be able to communicate with agents running on standard A-globe . Agents should
be able to migrate between mobile devices and also between mobile devices and standard A-globe
platform.

Resource balancing – implementation of A-globe monitoring and load balancing module. The
monitoring module should acquire information about each agent’s resource consumption (memory
and processing time of the host used by an agent where A-globe is running). It shall act as a
process/task manager in the operating system, but on the A-globe agent platform level. The balance
module will negotiate with other platforms and may decide to migrate an agent consuming huge
part of platform resources to the other host with enough resources. Each agent in A-globe will be
able to specify if it should be automatically moved, moved after it gives a permission or cannot be
moved at all.

Standard simulation tools – we plan to prepare a common set of environmental simulation
agents (ES) that can be used for rapid creation of a new simulation scenario. The environmental
agents in A-globe are responsible for simulation of the environment in the scenario world – for
example position and movement of the entities, physical interaction between them, imposing visibility
restrictions on the entities, weather information depending on container position in the simulated
world, etc. Created set of the EA should support both 2D and 3D worlds. Currently, most ES agents
are scenario specific.

Limited communication bandwidth – in the current A-globe version the environmental
agents cannot control communication bandwidth between entities, they can only control communica-
tion visibility. When entities are running on the same host, the communication bandwidth limitation
is given by the speed of host CPU. When entities are running on different hosts, the limitation is
given by the available network bandwidth (decreased by TCP/IP protocol consumption) connecting
these hosts. We can implement new bandwidth control module in the current A-globe message
transport layer that can impose bandwidth restrictions on link between any two containers in the
scenario (unprocessed message can be refused due to insufficient bandwidth or wait in the queue).
This feature will enable us to better simulate scenarios with embedded or ubiquitous devices.

Client interaction tool – current A-globe version provides GIS topic messaging [48] which is
very useful for distribution environmental information between server and client agent containers.
Using client interaction tool, an agent will be able to interact directly with other agents. For example,
an agent should leave some object or information in its current position and other agents approaching
that position can see the object, take that object or use the information. This approach could help
us to save the server processing power in distributed simulations.
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Abstract:

The aim of the FA8655-04-1-3044-P00001 project is to deploy the multi-agent technology for the
deconflicted air-traffic control among several autonomous aerial vehicles (manned as well as un-
manned). Within the first six month of this research effort technical implementation of the agent
based model of the autonomous flight has been carried out. The agent based model of the individ-
ual flights and models of interaction have been deployed within AFRL funded A-globe multi-agent
system.

The preliminary version of the negotiation based deconfliction process have been developed and
integrated in the A-globe-based model of the individual flight. The system operation has been
integrated with freely available, geographical and tactical data sources. This has been done in
order to demonstrate the openness of the system to integrate with real data. An additional, web
client visualisation and access component has been developed in order to facilitate a multi-user,
platform independent use of the system. The results of the first phase of the project has been
described in technical detail in this report and are illustrated in the enclosed *.avi video sequence.
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Delivery structure

This delivery consists of this report and demonstration disc and contains the elements listed here-
after:

1. Paper and electronic version of this report

2. source codes – all JAVA sources of the ATC system with comments, A-globe sources are
included,

3. two demonstration scenarios

4. ATC system source codes documentation, demonstration scenarios description

5. *.avi video demonstrating the results.

This delivery is going to be delivered in electronic and paper forms. The final delivery will be
available for download from:

ftp://deconfliction:FA8655-04-1-3044-P00001@agents.felk.cvut.cz
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1 Project Objectives

The specific objectives of the FA8655-04-1-3044-P00001 project have been to provide:

− multi-agent model of individual flight deployed in the A-globe multi-agent system,

− 3D visualization component and 2D web-client access component,

− component providing a route plan within times specific way-points avoiding no-flight zones,

− rule-based deconfliction negotiation mechanisms among multiple aerial vehicles.

In the following we provide technical description of the delivered components and explanation
how the listed objectives are matched.

3
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2 System Structure Overview

Air Traffic Control (ATC) system is mainly written in JAVA language except real-time visualization
component which is written in C++ and is pre-compiled for Windows 32bit operating system. The
system can be easily spread on more host computers with different operating systems. The system
consists of several components, see Figure 1:

ATC core
agent-based system running on A-globe

Server

Platform with
airplanes

Platform with
airplanes

Real-time 2D/3D
state visualizer

#1

Real-time 2D/3D
state visualizer

#N

Remote web
client #1

Remote web
client #N

Intranet / Internet

.  .  .  .

HTTP + Applet protocol

l
oc

ot
or

p 
oisi

V

Figure 1: ATC System Structure Overview

− ATC core – mandatory component of the system responsible for aircraft simulation and
airways planning. All parts of this component are represented by agents which are running
on A-globe JAVA multi-agent platform [1, 4]. This component also provides interfaces for
connection several number of real-time visualization components and remote WEB clients.
The architecture of this component is described in the section 3.

− Real-time 2D/3D visualizer – optional component that provides real-time overview of the
simulation state with all important information in a 3D/2D environment to the user. There
can be more visualizers connected to the system at the same time and each can provide
information from different area of the simulated environment. Data are transferred between
ATC core and a visualization component by the TCP/IP connection using special binary
protocol for fast data encoding/decoding. The component architecture and visualization
capabilities can be found in the section 5.

− Remote WEB client – optional component allowing remote user to connect and interact
with the ATC core system. In current version the user can only display information which he
needs. The component and protocol are ready for implementation of active user-controlled
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action that will have impact to the future simulation state, e.g. the user will be able to
define and insert new flight to the system or change mission specification of some aircraft.
The client is simply started by the entering URL address of the ATC core system to the
internet browser. The client is written in JAVA built up on the JOGL libraries (Java binding
for OpenGL [3]) which are used for accessing graphics 3D acceleration. The ATC core system
uses Java Web Start application for the client loading and starting. Before a user can use all
features of the remote WEB client, he needs to be successfully logged with valid username and
password. For minimizing network traffic between the remote client and ATC core system
combination of HTTP and special binary protocol is used. Remote client authentication
procedure is secured using one-time hashes for password validation. If it is necessary whole
data communication can be secured using asymmetric cryptography but it comes with higher
processor load requirements. Overview of user interface and data provided via remote client
is in the section 5.3.

All system components can run on the same host computer or the system can be spread on
more hosts for simultaneous simulation of huge number of aircraft. Components requirements for
host machine are specified in the sections 7.1, 7.2 and 7.3.
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3 ATC Core

Agent-based ATC core system encapsulates one server component (described in section 3.1) and
one or more platform components, figure 1. Components are running on the A-globe JAVA multi-
agent platform. The platform component is used as a registration unit for starting simulated
aircraft container (described in section 3.2). Inside on Java Virtual Machine (JVM) only one
platform component can be started. When ATC system is used for planing/simulation of huge
number of aircraft it is highly recommended to use more host computers with own JVMs and
platform containers. There is no sense for starting more JVMs on the same host it only leads
to the higher resource requirements. Whole ATC core system (both server component and one
platform component) can be started inside the same JVM.

In the configuration when whole ATC core system is running on the same host machine, it is
highly recommended to start one platform component in the same JVM with the server component.
Appending new containers to the running JVM is allowed by A-globe multi-agent platform [4]. In
the situation when ATC system is started on the two or more host computers, it is useful to run
server component separately on the one computer and rest computers has one platform component
on each of them. The number of running aircraft containers on the more registered platforms is
proportionally split between them. By this way the ATC system balances the overall load between
all registered computers.

3.1 Server Component

The server component of the ATC core system is sole central element of the system. It simulates
positions of aircraft and other objects in the simulated world, aircraft hardware, weather condi-
tions, communication ranges given by range of board data transmitters, etc. When the proposed
distributed agent system for flying on deconflicted airways will be used to control real aircraft, this
server component can be removed.

The server component of the ATC core system is also responsible for acquiring information
about all planes and provides them to both real-time visualizer component (section 5) and remote
WEB client (section 5.3). It works also as a scenario player which takes care of creation of new
aircraft with a rough plan mission in specific time moment.

The server component, figure 2, consists of several agents:

− Configurator Agent – handles configuration of the ATC system. It loads initial configu-
rations from the specified configuration files and distributes them to the other agents. The
configurator agent is also prepared for dynamic configuration changes during the running
planing/simulation.

− Plane Manager Agent – administrates connected JVM platforms and running aircraft
containers, starts new or removes existing planes, gives initial flight mission to the plane.
New planes can be started from the graphical user interface or created automatically as
specified in the scenario script. The new aircraft container is started on the registered
platform where there are minimum running plane containers. This works as a load balancer
between connected host computers where the ATC core system is running. Any running
aircraft can be removed from the ATC system using this manager.

− Plane Simulator Agent – computes true position of the aircraft in the simulated world.
It contains all physical models for the all plane types and holds all current flight plans and
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Figure 2: Server component of the ATC Core system

states for running aircraft. When a plane pilot agent changes some part of the flight plan, the
change is propagated via plane agent to this plane simulator agent by the difference flight
plan update. The details about physical modelling of aircraft can be found in the section 4.1.
The agent can be asked for the plane position in current simulation time by the pilot agent.

− Distance Agent – counts euclidian distances between every pair of existing aircraft using
the positions generated by the plane simulator agent.

− Visibility Collision Agent – prepares A-globe visibility updates [4] for controlling com-
munication restrictions between all A-globe agent containers. It also detects whether there
is physical collision between flying aircraft. If collision is detected the plane simulator agent
is notified about it. The airplanes that had collision with other object are uncontrollable and
they go down to the ground. Falling aircraft can endanger any plane which flies under it.

− Universal Sensor Agent – represents all radar sensors on aircraft boards. Plane agents
can register a specific sensor in it. The sensor agent sends radar information to the registered
agents depending on the sensor characteristics and aircraft positions and orientations.

− Zone Manager Agent – keeps no-flight zones. It transforms any defined no-flight zones
to the compressed octant tree. The ground surface is also represented as a special no-flight
zone. This allows use of detailed flight plan planning mechanism also to the flight planning
without collision with the ground surface. No-flight zones can be dynamically changed during
the planning/simulation. Different aircraft can use different no-flight zones.

− Visio Agent – is an interface between the JAVA agent system running on A-globe and the
C++ real-time visualizers. The agent provides bi-directional communication. Commands
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thus can be send from the visualizer user interface back to the ATC system. For fast com-
munication there is special binary protocol defined for visualizer connection.

− Applet Server Agent – runs HTTP server, Applet Data server and all external data
providers. It provides communication interface between ATC agent system and the remote
WEB client (described in the section 5.3). For allowing access to the ATC system from the
networks shielded from the internet by the proxy servers the HTTP server listens on standard
TCP/IP port 80 and Applet Data server listens on the port 443 normally used for HTTPS
protocol (this port is typically tunnelled in such networks). ATC system generates cache
and proxy controls headers for controlling cache content validity. The Applet server agent
has registered data layer providers which provide external and internal content to the remote
clients. All integrated data layer contents are described in the section 5.3.1. Currently
providers read external content from the local dist store but it can be easily changed to
integrate any other on-line data source to the system.

All server agents communicate together using A-globe topic messaging described in [4]. All
used topics are defined in the project class atc.simulation.global.TopicConstants where the
description of the topic content can be also found. The communication between server agents
and platform hosted agents also utilizes topic messaging due to its easy usage without any
complicated addressing. In the project class atc.utils.TopicConstants there are defined all
topics used for client-server communication.

3.2 Platform Component with Running Airplane Containers

As described in the section 3, the platform container is used as a registration unit for starting
simulated aircraft. In the system there can be more platform components connected to the server.
It is depending on the number of computers used in the configuration. Design of the platform
component is shown in the Figure 3. In the platform container there is only one agent in that
container running called platform agent. The agent acts as a control bridge between plane manager
agent and the local JVM where it is running. Through this agent plane container can be started
or removed. In one platform component (inside one JVM) there can run many plane containers or
there can be no plane container at all.

The started plane container hosts two agents:

− Plane Agent – provides higher-level of plane functions, such as flight plan execution in
cooperation with plane simulator agent, radar and detector readings, plane configuration and
time synchronization ticks. The plane configuration includes aircraft type and its mission
specification with rough flight plan (see section 4.3) - time constrained or no constrained
waypoints.

− Pilot Agent – is main control unit of the simulated aircraft handling negotiation based
deconfliction as described in the section 6. It processes notification about new visible object
on the radar and tries to communicate with respective pilot agent if there is some. It plans
detailed flight plan from the initial mission specification given by the plane manager agent
with respect to the no-flight zones (section 4), described in the section 4.3. It is also respon-
sible for collision detection between its flight plan and the other flight plan part (see section
6).

The plane container agents communicate with the server container via A-globe topic mes-
saging. While together they communicate by standard agent communication language (ACL)
messages.
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4 Flight Models in A-globe

In this section we will give a more detailed description of the components of our system which are
responsible for the modeling of the flight of airplanes. The flight modeling proceeds in two main
phases:

− planning – a flight plan is composed for each airplane, describing the trajectory that the
plane will follow; and

− simulation – the actual flight of airplanes is simulated according to their flight plans.

The airplane model and the structure of flight plans used in our simulation system were designed
so that the simulation is very fast and the simulation system is able to plan the flight paths and
simulate the flight of a great number (hundreds to thousands) airplanes at once. That is why we
use a very simplified physical model of airplanes in our simulation.

4.1 The Airplane Model

In our system, airplanes are modeled as mass points, which move along a previously planned
trajectories. The state σ of an airplane in given time t is defined by the following parameters: the
center of mass of the airplane P, direction vector d, normal vector u, velocity v and acceleration
a. The direction vector d corresponds to the flight direction. The vector u, normal vector or
up-vector, is perpendicular to the direction vector and always aims upwards. Let us denote vector
(d × u)/||d × u|| (an unit vector perpendicular to vectors d and u) as w; then, the quadruple
(P,d,w,u) defines the local coordinate system bound to the current state of the plane, as opposed
to the world coordinate system (O,x,y, z), see Figure 4. The plane parallel to vectors d, w and
passing through P is referred to as plane of flight.
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Figure 4: World and local coordinate systems

10



November 30, 2005 FA8655-04-1-3044-P00001 final report

longitudinal
axis

lateral axis

vertical
axis

Figure 5: Axes of the airplane

This definition of local coordinate systems of the airplanes allows us to specify the flight plans
for the airplanes in a very simple way (the flight plans are described in detail below). However, it
is important to note that this coordinate system is linked with the motion of the airplane and that
the directions of vectors d, w, u do not necessarily correspond to the directions of longitudinal,
lateral and vertical axes of the airplane (see Figure 5). As opposed to simplified mass point model,
the real airplane has a specific geometry and shape of wings. For example, the lift and drag forces
affect the airplane movement thus the direction of flight of the airplane is not identical to its main
(longitudinal) axis, but there is nonzero angle α between the (frequently referred to as the angle of
attack). Also, during turns, the airplane is affected also by the centrifugal force, which forces the
airplane to turn around its longitudinal axis; the angle between the plane of flight and the plane
of the wings of the airplane is called bank angle β. See Figure 6.

β

β

u

w

plane of flight

α

α

d

u

Figure 6: Angle of attack (α) and bank (β) angles

The five main forces, which affect the movement of an airplane during the flight, can be ex-
pressed by the following simplified formulas:

− gravity G = mg,

− lift L = 1
2CLAρ2,
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− drag D = 1
2CDAρ2, where CD = CDmin

+ C2
L

π·ar·0.75 ,

− thrust T, and

− centrifugal force C = mv2

R , present during turning.

The meaning of the parameters mentioned above is as follows: m is plane weight, g is the
acceleration of gravity, CL is the coefficient of lift, CD is coefficient of drag, A is the area of wings,
ar is the aspect ratio of wings, ρ is the air density, v is the airplane velocity and R is a radius
of turning. Our airplane model is very simple; we do not use the aforementioned formulas as
the equations of motion to describe the Newtonian airplane dynamics, but we use them only to
determine the magnitudes and directions of the forces affecting the airplane. This information is
then utilized for getting the pitch and roll angles of the plane and for computing the thrust force.
The pitch (angle between the longitudinal axis of an airplane and xy plane) and roll (angle between
the lateral axis of an airplane and xy plane) angles are used for the simulation of the radars (since
the area of the airplane profile visible from the ground depends on the banking of the airplane).
From the magnitude and direction of thrust we can estimate e.g. the fuel consumption.

Our model neglects certain more complicated aspects of the airplane geometry, such as flaps or
landing gear. Furthermore, in the current version of the simulation system, we assume the airplane
weight to be constant during the entire flight – we do not consider the decrease of the weight due
to the gradual fuel consumption. We also do not (yet) consider the impact of wind on the velocity
and direction of the airplane movement; we assume that the plane performs such maneuvers, that
it always follows its planned trajectory and moves at the defined velocity. As for now, we utilize
this kind of information only to specify the direction of the airplanes during takeoff and landing,
in the way that the airplanes land and take off in the direction against the direction of wind.

4.2 The Structure of Flight Plan

Basically, the flight plan describes a trajectory, which the plane will follow during its flight. The
flight plan is represented by two-level data structure, whose principal building blocks are waypoints,
segments and elements. Waypoints and segments represent the high-level description of a flight
plan (rough flight plan); elements represent the low-level description (detailed flight plan).

− A waypoint contains the information about a particular location (its position in the world
coordinates and possibly some textual description) and time, when the plane is to fly through
the waypoint. The temporal data associated with the waypoint include the time of arrival t
and the time tolerance δ. During the planning phase, the flight paths are created in such a
way that the airplane flies through - if possible - the waypoint in the time interval (t−δ, t+δ).
It is possible to define an “exact” waypoint with a zero time tolerance, or a waypoint with
no time limitations at all.

− A segment represents a part of a flight plan between two successive waypoints. Each segment
consists of a sequence of flight plan elements. One segment typically contains two to six
elements.

− An element is the most basic building block of a flight plan. It represents a part of an
airplane trajectory, which is described by a simple curve (like line, circular arc, spiral. . . ).
Each element describes the flight path of the airplane relative to some initial state of the
airplane, which we will denote σ0. The element contains the following information describing
the flight path: the description of the curve (the type of the curve, possibly with some
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parameters) and the duration δ of flight for this element. The duration parameter is present
for all types of elements. The state, which the airplane reaches when it will fly off the whole
element (i.e. after the time δ has elapsed) we will denote as final state σ1 (with respect to
the element). If we use function notation, then the element can be considered as the function
σ(t) of state over time (more exactly, duration). Then, it holds that σ(0) = σ0 and σ(δ) = σ1.
There are four main types of flight plan elements (see Figure 7):
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γ
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Figure 7: Flight plan element types

1. Straight element, with two parameters: duration and acceleration. The airplane will
simply fly with the constant acceleration for the specified time in the direction given by
its initial state σ0 (i.e. in the direction of the direction vector d). The final velocity (at
the end of the element) is determined by the initial velocity, duration and acceleration.

2. Horizontal or vertical turn elements are represented by circular arcs. Horizontal
turns are performed in the plane of flight a correspond to a common notion of making
a turn. Vertical turns are performed in the plane described by the initial airplane state
vectors d and u, perpendicular to the plane of flight; they are used to represent parts
of flight path, where the plane e.g. changes its motion from a straight flight to an
ascent/descent or vice-versa. The parameters of both types of turns are the duration
and the turning radius. During the turning the airplane’s velocity remains constant.

3. Ascending or descending spiral (aka world horizontal turn). Represented by a part
of a spiral, with an axis parallel to the z axis of the world coordinate system. The
parameters of the spiral are the duration and the turning radius. The rate of climb,
or descent respectively, is derived from the direction vector d of the initial state σ0; its
parameter γ (see Figure 7) is the angle between the vector d and its projection to the
plane xy.

4. Warp element. A special kind of element, which does not contain any trajectory;
its sole purpose is an immediate change of state parameters – position, direction and
velocity. It is used mainly for the initial setup of the airplane state at the beginning of
a flight plan (the first element of every flight plan is always the warp element). This
element has zero duration.
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The more complicated flight plans are created by joining various types of flight plan elements
into a sequence. An example of such flight plan can be seen on Figure 8. The initial state of each
element can be obtained from the final state of the previous element. The warp element represents
an exception, since it sets all state variables of an airplane to new values regardless of its previous
state.

For the sake of simpler implementation of some algorithms and operations over flight plans,
the warp elements are used not only for the initial setting of state parameters at the beginning of
the flight plans, but we place them at the start of each segment. Aside from simplifying of certain
operations with segments, this measure effectively reduces the influence of possible cumulative
rounding errors, which may accumulate during the computations of the final states of the elements.

straight element

horizontal turn

vertical turn

spiral element

segment elements:

segment
1

segment
2

Figure 8: Flight plan, segments, elements

4.3 Flight Path Planning

The planning of the flight path of an airplane is performed by the planner, a component of the
pilot agent, which resides on the container associated to the airplane. The result of the planning
is the flight plan, which was described in detail above. The inputs to the planner are the rough
flight plan for the airplane (represented by the list of waypoints, which the airplane has to visit)
and the velocity, which the airplane should have at the beginning of its route. In addition, the
planner may also consider the information about zones, which the plane must not enter during its
flight, and plan the path to avoid them.

Aside from the planning of new flight paths, another important function of the planner is the
so-called replanning. The replanning changes a part of an existing flight plan while keeping the rest
of the plan intact. We use the replanning e.g. in collision detection and avoiding the collision zone
(see 6.2). Also, replanning is used to alter the flight plan to avoid the no-flight zones (we describe
them in more detail later). The replanning is usually performed by means of inserting of special
waypoints into a particular segment or segments. The insertion or insertions will cause the splitting
of the replanned segment into two or more new segments; these segments are to be planned again,
thus creating a replanned flight path. Aside from the ordinary waypoints, used for the definition
of the important navigational points for planning the flight path of an airplane, there are two more
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types of waypoints. The solver waypoints are used during the collision detection and avoidance
and the auxiliary temporary waypoints are used to define the path for avoiding the no-flight zones.

The planning of a flight path proceeds in three main phases. In the first phase (path planning),
the planner generates an initial flight plan, which passes through all input waypoints. If there are
any time constraints associated with the waypoints, they are ignored in this phase. The planned
path is created to be as short as possible. In the next phase (time planning), certain parameters
of the segments generated in previous step are adjusted in such way that the modified flight plan
satisfies (if possible) all time constraints. Finally, if there are defined any forbidden (no-flight)
zones for the airplane and the flight plan generated in the previous phases collides with any of
them, the plan is in the third phase (avoiding the no-flight zones) modified to avoid them.

4.3.1 The Path Planning

In this phase, the planner generates a detailed flight plan in such way that the flight path will
correctly pass through all the waypoints. The temporal data associated with each waypoint are
not yet taken into account. For each couple of successive waypoints, a segment is generated. The
segment is empty, containing no elements. A segment represents the smallest part of flight plan,
which can be planned independently on the other parts of flight plan. Each segment has several
parameters, serving as inputs for planning algorithm (which will fill the initially empty segment
with elements). These parameters are the start and end points of the segments with the tangents
to the flight plan in these points. The tangents are calculated from the input set of waypoints and
chosen in such a way that the tangent in the end point of some segment and the tangent in the
start point of the next segment will point in the same direction (this property is called geometric
continuity or G1; the planning algorithm, which will be described below, assures that the same
condition holds also for the elements of the segment; therefore, the planned flight path is always
G1 continuous).

With these parameters (endpoints and tangents), we can perform the planning. The output of
the planner will be in the form of the sequence of flight plan elements. To facilitate the planning
algorithms, the planner uses a representation of the elements different from the one described
above. Instead of specifying the elements relative to some previous state (which is useful i.e.
during the flight simulation performed by plane simulator), we use a representation containing all
parameters necessary to determine the exact location and shape of the element. For example, a
straight element is defined by the start and end points of the line and the acceleration.

The new flight plans are created by using three types of elements: straight elements, turns
(horizontal or vertical) and spirals. The fourth type of element, the warp element, is used only at
the beginning of each segment for the purposes of setting the initial velocity of the segments in the
time planning phase; we do not use them during the path planning. For the purposes of planning,
the horizontal turns are used in the cases, where it is necessary to change the direction of flight
(more exactly, the heading of the airplane) in some place. The vertical turns are used in places
where it is necessary to change the pitch of the airplane (i.e. when the airplane starts climbing).
The spirals are used mainly in the situations, when it is necessary to rapidly change the flight level
of an airplane (its altitude). We distinguish between ascending spirals (with positive elevation),
descending spirals (with negative elevation) and waiting loops (with zero elevation). Waiting loops
represent the situation, when the airplane flies in circles around a fixed point.

It is obvious that the parameters of turns and spirals cannot be chosen completely arbitrar-
ily. For example, the airplane cannot turn on the spot and also cannot climb or descend under
arbitrarily steep angle (the last statement is not entirely true, since there are some airplanes that
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fit into this category, but they are rare exceptions). Therefore, some limitations must be consid-
ered during the planning, such as that the radius of turns and spirals cannot be less than certain
minimum (this parameter depends on the type of airplane and is defined as the radius of smallest
turn, which the airplane is able to perform when flying at maximum velocity). Another limitation
is that the pitch angle must not be greater than certain limit.

We will now focus on the description of the method which we use for generating a flight plan
for a given segment. In the most general case, the segment which is to be planned connects two
points A, B with different altitudes, whose respective tangents a, b have different directions and
nonzero pitches (i.e. angles between the tangents and their projections into xy plane).

The method is based on the notion that if we have some segment configuration (A,B,a,b) for
which is difficult to create a flight plan, it is often possible to reduce this case a simpler one by
inserting suitable elements to the start and end of that segment. Let A′ be the end point of the
element inserted to the start of the segment and B′ the start point of the element inserted to the
end of the segment (and a′, b′ the respective tangents). These parameters define a new segment
configuration (A′,B′,a′,b′), possibly simpler to plan.

top view

side view

straight element

horizontal turn

vertical turn

spiral element

segment elements:

A A‘’’A‘’A‘

BB‘’’ B‘’ B‘

Figure 9: General segment planning

We will show how we can perform the planning by a series of such reductions (see Figure 9).
Consider the most general configuration (A,B,a,b) mentioned above. As a first step, we may
reduce this case to simpler case, in which the tangents at the start and the and of a new segment
will have zero pitch (will be parallel to the plane xy). This can be accomplished by inserting suitable
vertical turns to the start and end of the original segment. This reduction yields a new internal
segment (A′,B′,a′,b′), whose tangents a′ and b′ have zero pitch. This segment can be further
reduced by inserting suitable horizontal turns to its start and end to segment (A′′,B′′,a′′,b′′)
such that the tangents a′′, b′′ have the same direction and this direction is also parallel with the
projection of the line A′′B′′ to the xy plane. By doing this, the initially three-dimensional planning
problem is reduced to two-dimensional one, since the points A′′ and B′′ along with the tangents
a′′ and b′′ all lie in the same plane and this plane is perpendicular to the plane xy. This segment
can be further reduced by inserting suitable vertical turns to the segment (A′′′,B′′′,a′′′,b′′′) such
that the tangents a′′′ and b′′′ and line A′′′B′′′ are mutually parallel. The segment A′′′B′′′ can be
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then easily planned by single straight element connecting the points A′′′ and B′′′.

However, it is possible that the pitch of a line A′′′B′′′ will be greater than maximum allowed
pitch angle for the airplane we are generating plan for. Should this case occur, we can solve it
i.e. by dividing the line segment A′′′B′′′ in the middle into two line segments and by inserting a
climbing (or descending) spiral between these two segments (see Figure 10).

4.3.2 The Time Planning

The flight plan, which is the output of the first phase of planning, constitutes only the initial
sketch of the flight route of an airplane; it does not take into account the time relations along it
and it ignores all the temporal data assigned to the waypoints. In the next phase of planning, the
previously planned segments are adjusted in the way so the resulting flight plan conforms to the
time constraints. That is, that the time of flight through each segment would correspond to the
time constraints defined in the start and end waypoint belonging to the segment. Basically, we
can affect the time which it takes to fly trough a segment by three ways:

1. by setting the velocity, which the plane has at the start of the segment,

2. by setting the acceleration parameter of the elements which allows to change the velocity
(i.e. of straight elements), or

3. by changing the length of the segment.

The first two ways are obvious, the third requires more detailed explanation. As it was already
described above, all segments are planned by following always the same procedure: the original
”general” segment is reduced by successive insertions of various types of elements to a segment
which is ”simpler to plan”. After several reductions, we obtain from original segment (A,B,a,b)
a simpler segment (A′′,B′′,a′′,b′′), where the projection of the line A′′B′′ into the plane xy will
have the same direction as both tangents a′′, b′′ (see Figure 10).

We then could plan this kind of segment either by a simple sequence vertical turn - straight
element - vertical turn with total length of l1 (but only in the cases when the altitude difference
between A′′ and B′′ is relatively small so the straight element will have pitch smaller or equal
than maximum pitch for the particular airplane), or in more complicated way by using a spiral
element, with total segment length of l2 (see Figure 10). The latter method of planning (which
uses the spiral) allows for the arbitrary stretching the segment over the length l2 by adjusting the
parameters of the spiral and vertical turns. In summary, all segments can be planned to have
length greater or equal to l2. Furthermore, in the cases where it is possible, the segment can be
planned without the use of the spiral, with the length of l1.

For now, our time-planning algorithm does not take into account the possibility to alter the
airplane velocity when flying over the straight elements of the flight plan. We use the following
simplification: the airplane’s velocity is constant in the scope of each segment, the acceleration is
always zero. In the points where two segments meet (the waypoints), we allow a step change of
airplane’s velocity. We therefore perform the time planning only by setting the initial velocity at
the start of the segments and by adjusting the length of the segments.

The actual time-planning algorithm is very simple, one-pass algorithm, which adjusts the time
relations of the segments starting from the first segment and gradually proceeds to the next seg-
ments. The algorithm never backtracks; once the segment has been planned, the plan will never
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Figure 10: An example of planning a segment of type (A′′,B′′,a′′,b′′). The segment can be
planned either by two vertical turns and a straight element or by two vertical turns, two straight
elements and a spiral.

change again (speaking in the terms of time planning). The segments are planned in the way that
a lower bound of the time allowed for each segment is considered first; the airplane will fly the seg-
ment as fast as possible. Since this algorithm in its current form constitutes a radical simplification
of the problem, it will be subject to further development and improvement.

4.3.3 Avoiding The No-Flight Zones

One of most important extensions to our flight path planner is the capability to plan the flight
path with respect to so-called no-flight zones. By no-flight zones we mean the areas, where the
normal flight of airplanes is not possible or permitted for various reasons (e.g. the areas around
the nuclear power plants or military installations). The natural terrain obstacles, such as the tops
of mountains, can be also considered as a kind of natural no-flight zones. Some types of no-flight
zones (such as natural no-flight zones) are obligatory to all types of airplanes; some types are to
be considered only by certain types of airplanes. For example, the area around a military base is
typically a zone of no flight for all airplanes except for the military airplanes that have a permission
to land at the base. For this reason, it is useful to define, in addition to single no-flight zones, also
groups of no-flight zones obligatory for certain types of airplanes.

After finding the flight path passing through the input set of waypoints, the planner tests
all segments for possible collisions with the no-flight zones. The waypoints and no-flight zones
pertaining to a given airplane are always defined that there is no collision between them, so for
a segment always holds that both its endpoints lie outside of the defined no-flight zones. In the
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case of a segment intersecting a no-flight zone, such a segment is replaced by a flight path, which
bypasses all colliding no-flight zones. The endpoints and corresponding tangents of the bypassing
flight path will be equal to the endpoints and tangents of the original segment. We construct
the bypassing flight path by inserting one or more new waypoints between the endpoints of the
original segment and by planning a flight path through these waypoints. Therefore, the flight path
to replace the original colliding segment will be composed of two or more segments (see Figure 11).

segment elements:

straight element

horizontal turn

vertical turn

a)  before

b)  after

Figure 11: An example of the avoiding the no-flight zone. Seen from top view. The segment collides
with a no-flight zone (top picture). The zone can be avoided by inserting another waypoint into
the segment and replanning the flight plan (bottom picture).

The problem of the finding of collision-free flight path is therefore equivalent to the finding of
one or more ”bypassing” waypoints, which will determine the new flight path. The description
of an algorithm, which we use to find these waypoints, will be given below, along with the brief
description of relevant data structures.

The idea central to our approach can be formulated as follows: the entire area, in which we
perform the planning and simulation of a flight of an airplane (or airplanes), is divided by uniform
grid to a set of identical cubic (or cuboidal) cells. We then mark all cells, which are intersected by
some no-flight zone, as full; the other cells are marked as empty. Let’s assume that the waypoints
are always placed sufficiently far from the no-flight zones, so even after the ”rasterization” of them
by the grid neither of them will lie in full cell of the grid. By the rasterization we mean the result of
the conversion of no-flight zones to the set of full grid cells; obviously, the no-flight zone is always
a geometric subset of its rasterization.

Let’s consider a segment, colliding with some no-flight zone or zones. The segment at certain
point intersects some full grid cell, although its endpoints lie by definition in empty cells. Our task
is to find such a path that will connect both endpoints of the segment, while passing only through
empty grid cells. This problem is equivalent to the problem of finding a sequence of empty grid
cells, which will form continuous ”tunnel” connecting given start and end grid cell. But then, the
start and end cells are simply the cells containing the start and end point of the segment, and the
cell sequence forming the ”tunnel” can be found e.g. by employing the well-known A* algorithm
(see the Figure 12). The centers of these cells can then be used as the ”bypassing” waypoints,
which will define the segments of the new collision-free path.

The algorithm which we have actually implemented is somewhat more complicated than the
one described above, but it follows the same basic idea. The main difference is that instead of
uniform grid, we utilize an octal tree. This data structure is slightly more difficult to traverse,
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Figure 12: Finding the ”tunnel” connecting the grid cells containing the start and end points
of the segment. Left picture shows the subdivision by the uniform grid, right picture shows the
subdivision by the octree. For the sake of clarity, the examples are shown in 2D.

but it requires much less memory than uniform grid. We represent the no-flight zones as spheres
(specified by their center and radius); the octal tree is constructed by successively inserting the
spheres into initially empty tree. In the current version of the planner, we utilize only this type
of representation of no-flight zones. The no-flight zones with more complicated geometry can be
approximated by the union of several spheres. However, the described method can use no-flight
zones of arbitrary geometry.

The sequence of the tree cells, found by the A* algorithm, forms a ”tunnel” containing the
flight path which we seek. In the simplified version of the planning algorithm, we have generated
the rough flight path bypassing the no-flight zones as the polyline connecting the centers of the
neighboring cells of the ”tunnel”. Nevertheless, the flight plans generated by this approach were not
very optimal and the airplanes often took a route to avoid no-flight zones, which was unnecessarily
long. Therefore, the current algorithm uses more sophisticated approach: we find the waypoints
of bypassing flight path by running a second phase of A* algorithm (running only over the tunnel
cells). The output of this algorithm is also a polyline, but its vertices does not necessarily lie in
the center of tunnel cells. The vertices of the polylines found by either approach correspond to the
”bypassing” waypoints with no time constraints.

The example of planning of flight paths with respect to no-flight zones can be seen on Figure
25. The flight plans are shown as thick polylines of various colors; the no-flight zones are shown
as red, semi-transparent circles.

4.4 Flight Simulation

The simulation of the flight of airplanes is performed by the plane simulation agent, which resides
on a server. This agent maintains the information about the state of all airplanes present in the
system, along with their flight plans. The flight of airplanes is simulated by the evaluation of their
flight plans over the time. The simulation agent is able to simulate the flight of many airplanes at
once.
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The function of the plane simulator can be well explained on the following analogy. Imagine
the flight plan as a movie, which will show the flight of the airplane from the beginning to the
end of its flight route. The plane simulator can be then likened to some sort of movie player and
the execution of the flight plan by the plane simulator to the playback of the movie on the player.
However, there are some notable differences between our plane simulator and ordinary VCR. Most
importantly, the plane simulator is able to simulate many flights at once. Also, the flight paths
of individual airplanes are not fixed after their first planning, but they can change in future (for
example, if two flight plans were set on a collision course, the airplanes will change their flight
plans to avoid the collision).

The simulation agent uses the notion of global simulation time. It is the time of a global clock,
called simulation clock, running on the simulation agent. This time serves as a reference frame for
all time information stored in the flight plans. When a new airplane is created, a free ”plane slot”
is allocated in the plane simulator for its flight plan and state information. After the simulator
receives a new flight plan for the plane, it starts executing (”playing”) the plan. Every flight plan
has defined its own initial global simulation time t0 (which is equal to the time when the simulator
had received this plan) and all time information contained in the flight plan is considered relative
to it.

Just as the VCR plays the movie by showing the individual frames every 25-th of a second, the
plane simulator executes the flight plans in discrete time steps. By default, the interval between
two such ”frames” (i.e. updates of the state information of the planes present in the system) shown
by the plane simulator is 100 milliseconds.

The simulator maintains up-to-date information about the states of all airplanes currently
present in the system. The state information stored in the data structures of the simulator always
contains the real state of the airplanes at the moment of the last update. Let’s say that the global
simulation time of the last update is t and the state of each airplane σ(t) describes its position,
direction, up-vector, velocity and acceleration. For each plane, the plane simulator also knows its
current position in the corresponding flight plan. By the position in the plan, we mean the current
segment, the current element and the relative time from the start of the element.

When the next update occurs, the global simulation time will be t′ = t + ∆t, where ∆t is the
time between two successive updates. The state information and the positions of the airplanes
in their respective flight plans has to be updated to new values. The state of each airplane is
updated by executing the portion of its flight plan corresponding to the time interval between the
global times t and t′. During the executions of flight plans, the positions of the airplanes in the
flight plans are adjusted accordingly. When the update ends, the new position of each airplane will
possibly refer to a new segment, element and/or relative position in the element. The segments
and elements, which were finished during the update, are removed from the flight plans. If during
the execution of the flight plan of some airplane the end of plan is encountered, the airplane is
removed from the simulation system.

The time value ∆t may be, but need not to be, equal to the real time passed between two
updates (in that case, ∆t is equal to the update interval); it even does not have to be constant
during the simulation. By changing the ∆t value, it is possible to change simulation speed; the
simulation can be sped up, slowed down or even stopped. Our simulator allows to perform the
simulation with speeds varying up to ten times of the normal simulation speed.

It is also possible to change the flight plan of a plane during its execution, for the reason of
changing a current course during the flight. For obvious reasons, only the parts of the plan, which
were not yet simulated (the ”future” parts of the plan), can be changed. Let’s say we want to
change a flight plan (i.e. replan it) and the part to be changed (by replacing it with a new plan)
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is specified by some element marking its start. The replanning will be performed in the way that
the portion of the original plan from the marker element to the end of the plan will be replaced by
the new plan.

Although our simulation system is quite complex, it is still in development phase. We are aware
that there are many aspects, which will need further development and improvement. The most
important of these are the following two:

− The physical model of an airplane. For now, the physical model used in our simulation is
sort of imprecise and incomplete. There are some interesting aspects of flight, which we do
not consider in the current version of the simulation system, including: the impact of the
forces affecting the airplane to the fuel consumption, the decrease of the airplane weight due
to the gradual fuel consumption and the influence of wind force on the airplane flight.

− The time planning algorithm. The current time planning algorithm is a very simple one;
it is fast (in the terms of performance), but the planned flight path is not necessarily the
optimal one. A remarkable disadvantage of this algorithm is that the airplane velocity does
not change smoothly over the entire flight plan, but that it is constant in the individual
segments and discontinuous at points where two segments meet.
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5 Flight visualisation in 3D and 2D

From the very beginning of the project it was obvious that a simulation of this kind will ask for a
sophisticated visualization component (visio) that will allow the user to quickly a easily overview
the entire simulation in a natural 3D environment, to efficiently navigate through it, but also to
provide the user with all the important data and information at the same time. Therefore, a
combination of 2D and 3D visual engine was developed.

5.1 System Architecture

As in several previous projects, an open-source 3D game engine CrystalSpace [2] was used as a
platform on top of which the visualization component is built. For efficiency and performance
reasons, the entire visio is written in C++ and it internally utilizes the OpenGL graphics engine.

Since A-globe, on the other hand, is a Java-based simulation system and both A-globe and
the visio are two completely independent modules, a binary network communication protocol had
to be defined and implemented to allow the data exchange between the two.

As a result, several independent visios can be connected to the simulation system at the same
time and the user can observe a different part of the 3D scene in each of them. Needless to say
that it is possible – and even advisable – to run the visio on a dedicated computer, completely
separate from the A-globe simulation system itself, allowing for better performance of each of the
modules.

It was already mentioned that the network communication protocol is binary-coded as it has
been designed with speed and efficiency in mind. The communication between A-globe and the
visio(s) is duplex: by sending messages to the visio, A-globe tells the visio that an airplane has
been spawned, destroyed, it has changed its position etc. The visio, on the other hand, sends
messages to the simulation system e.g. when it requests specific information about a certain
airplane upon user’s demand, such as its flight plans. In response to this request, the simulation
system selectively sends the required data. This behavior was introduced to reduce the amount of
data that need to be sent over the network – instead of sending all the data continuously even if
they are not needed.

In the visio, each of the currently existing airplanes (i.e. containers in the terms of A-globe
architecture) has its own internal message queue (buffer) where all the incoming messages are stored
upon arrival and they are processed as soon as possible. Ideally, this would happen immediately.
But in case the visio is temporarily or permanently overloaded, the messages cannot be processed
fast enough and they could eventually flood the system. To prevent such a situation, old messages
of certain type can be discarded once an updated message of the same type arrives. For example,
in case of airplane position updates, we only need to know the most recent position and all the
previous updates that we didn’t have time to process, are not important anymore. Therefore, those
messages can be removed from the message queue, effectively reducing the amount of relevant
messages to be processed once the visio has the time to do so.

It should be pointed out that due to the communication mechanism described above, the
visio must be started before the A-globe simulation begins. Obviously, if the visio was executed
after the airplanes were created in the simulation system, the visio would never know that these
airplanes exist and it would ignore all subsequent messages related to these airplanes. Also, in
the beginning of the simulation process, A-globe searches for all visios that may be listening by
sending a broadcast query. Subsequently, it communicates only with the visios that replied to the
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initial query. Therefore, all visios that are executed later in the process, remain invisible to the
A-globe simulation system.

5.2 User Interface Overview

The visio provides two main display modes: a two-dimensional (2D) view (see Figure 13) and a
three-dimensional (3D) view (Figure 17). They both work with the same underlying data, only
the way of depicting them differs. The user can switch between these two modes easily by pressing
the M button.

The 2D mode provides a radar-like top view of the scene. The user can zoom in and out as
needed by pressing the UP and DOWN arrow keys and scroll/pan the view by dragging the mouse
with the right mouse button pressed.

Figure 13: 2D view

Airplanes present in the system are displayed as 2D icons that visualize both current position
and direction of each airplane, see Figure 14. Different types of airplanes are differentiated by the
shape of their icons.

Figure 14: Four types of airplanes: Boeing 737, Electra and Su-47 and X-45

Recent flight history of each airplane is visualized by a polyline of the same color as the color
of the airplane’s icon. It can be switched on and off by pressing the H key.
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An airplane can be selected by clicking on it. This applies to both 2D and 3D mode. It is
a common practice to select the airplane in 2D mode and then switch to 3D mode rather than
to try selecting the airplane directly in 3D, which can be tricky sometimes. Once the airplane is
selected, the camera starts following it so that it stays in focus, see Figure 15. A set of zones is
displayed around the selected airplane as a group of concentric circles. Most importantly, these
refer to the collision range (innermost) and the visibility range (outermost) of each airplane. Once
an airplane enters the visibility range of the currently selected airplane, its icon changes to a bright
(and preferably unique) color while all icons of airplanes that fall outside the visibility range are
colored in dark grey. This makes it easy to quickly identify and track the airplanes that are visible
to the currently selected airplane.

Figure 15: Communication lines between airplanes

Communication between a pair of airplanes (which can occur only in case that they both fall
into the visibility range of one another) is represented by a green solid line connecting the two
airplanes. Visualization of communication lines can be switched on and off by pressing the C key.

Figure 16: Flight plans in 3D
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The current flight plan can be displayed for the selected airplane and/or for all airplanes that
are visible to it. The user can circle through these various modes by pressing the P key. Flight plans
in 2D are represented by solid polylines that interpolate thought the intended route (Figure 15).
In 3D, flight plans are displayed as three-dimensional semitransparent corridors of a rectangular
profile, see Figure 16. Once again, the color of each flight plan matches the color of the airplane’s
icon.

Waypoints of the currently selected airplane in both 2D and 3D mode are displayed as a set of
vertices in 2D/3D space and are interpolated by dotted polylines. If no airplane is selected, then
all the waypoint vertices are displayed and by clicking on any one of them, the entire corresponding
interpolated path is rendered. Waypoints can be switched on and off altogether by pressing the W
key.

The 3D mode is useful for observing the entire simulation in a natural 3D environment that
allows the user to get a better insight of the spatial relations between airplanes, the actual 3D
shapes and possible collisions of flight plans, series of waypoints etc. The 3D mode provides
almost all the information earlier described in case of 2D mode.

Figure 17: 3D view

Apart from other things, in 3D mode it is possible to hover around the selected airplane by
holding the SHIFT key and pressing the arrow keys. It is also possible to zoom in and out by
pressing UP and DOWN arrow keys alone. These two features are particularly useful when trying to
get the most convenient view of the current state of the simulation.

Another important feature of both the 2D and 3D visio is the ability to interactively control
the speed of the simulation. The user can achieve this by pressing the following keys: NUMPAD PLUS
(increase the speed), NUMPAD MINUS (decrease the speed) and NUMPAD STAR (toggle pause on/off).
As the user presses any of these keys, the visio sends a message to the simulation system to change
the speed of the simulation and the simulation system subsequently sends a confirmation message
back to the visio with the information about the newly set simulation speed. The visio displays
the current speed of the simulation in the top left-hand corner of the screen, together with the
current simulation time.
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Figure 18: Multiple levels of detail of the same 3D model

As the visio is required to cope with as many as hundreds of airplanes, massive optimization of
visualization of 3D space had to happen. One of the key features in this respect is the incorporation
of multiple levels of detail (LOD) for all 3D models (Figure 18). For closeup views, the 3D models
contain as many details as possible in order to look realistic. But as the camera moves further
away, the detailed models are replaced with more rough and therefore more lightweight versions.
For wide shots, the 3D models consist only of a few polygons and so they can be rendered very
fast. Each airplane exists in five LOD representations ranging from tens to several thousands of
polygons.

5.3 Web based Access to the Application

The simulation can also be accessed using a Java client web application that via network connects to
the simulation system which acts as a server and provides all its clients with regular data updates.
This way, a number of users can concurrently observe and interact with the very same simulation.
Accessing the simulation system via network is as simple and straightforward as opening a web
browser and entering the IP address of the computer on which the A-globe simulation system is
currently running. The client web application will launch shortly.

Before the user can access the simulation, he/she needs to log in the system by entering a valid
user name and password as shown in Figure 19.
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Figure 19: User login

5.3.1 GIS Data Layers

During the development of the simulation system, a request arose that the simulation should be
based on and integrated with real world data. Therefore it was necessary to start looking for
internet resources of various GIS data. Fortunately enough, it quickly turned out that such data
are publicly available online, at least for the area of the United States. Data from several websites
were parsed, filtered and merged together to serve as a database for our simulation system.

• Landsat7 Images – a mosaic of Landsat7 images at the maximum resolution of approxi-
mately 50 meters per pixel was used as an underlying ortophoto map of the United States.
The source data for this layer were collected from http://onearth.jpl.nasa.gov. For pur-
poses of performance optimization and data flow reduction, the original satellite images had
to be split into uniform tiles of 512 × 512 pixels. The same image mosaic was generated
in multiple resolutions to allow seamless zooming in and out of the virtual map. Since the
data for this layer consist of about 1.7 gigabytes of JPEG-compressed images covering the
entire area of the United States, a sophisticated system of switching between image tiles and
multiple resolution representations was the only and the best way to manage such amount
of data. See Figure 21.

• State Boundaries – detailed vector shapes of 50 U. S. state boundaries obtained from
http://seamless.usgs.gov. Extensive post-processing of the data had to be carried out as
the source data contained a lot of shape redundancies and duplicities. See Figure 21.

Airports – a set of more than 650 U. S. airports, including their names, GPS coordinates
and the corresponding average numbers of enplanements per year obtained from the site
http://seamless.usgs.gov. The size of the airport icon reflects the average number of
enplanements per year. See Figure 22.

No-flight Zones – for the purposes of the simulation we decided to use U. S. powerplants
to act as the no-flight zones. A set of more than 80 U. S. powerplants, including their names
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Figure 20: User interface overview

and GPS coordinates was derived from the data available at http://geonames.usgs.gov.
See Figure 22.

Cities – a set of more than 24 thousand U. S. populated places, including their names, GPS
coordinates and the corresponding population obtained from http://geonames.usgs.gov.
The size of the city icon reflects the size of the population. See Figure 23.

Highways – a set of more than 26 thousand major U. S. highway segments derived from the
data available at http://seamless.usgs.gov. See Figure 23.

Figure 21: GIS data layers: Landsat7 images and U. S. state boundaries
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Figure 22: GIS data layers: airports (left) and no-flight zones (right)

Figure 23: GIS data layers: cities (left) and highways (right)

5.3.2 ATC System Data Layers

Apart from the generally static GIS data layers, there are also several ATC data layers that are
generated and updated by the simulation system in runtime.

Airplanes – a layer of airplane icons representing each airplane’s type, current position and
direction. See Figures 20 and 25.

Rough Flight Plans – also called waypoints, these plans are series of points in space through
which the airplane is supposed to fly on its way. These are displayed as dotted polylines in
the visio. See Figure 20.

Detailed Flight Plans – these plans are the actual routes that the airplanes follow. These
are displayed as solid polylines in the visio. See Figures 20 and 25.

• Weather Information – weather conditions in the local area are displayed in the status
line at the bottom of the screen. See Figures 24 and 25.

5.3.3 Icon Palette and Keyboard Controls

In the top right hand corner of the screen is located an icon palette which gives the user access to
application controls.

Layer Menu – lets the user switch on and off various data layers in the main view
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Figure 24: Detail view including the weather information

Zoom to Region – lets the user zoom to a specific region (state) by selecting it from the
list

Locate GPS – lets the user move to a specific location by entering its GPS coordinates

Zoom to Selection – lets the user zoom to a specific part of the scene by selecting a
rectangular area with the mouse

Zoom to Airplane – lets the user zoom to a specific airplane by clicking on it

Toggle Coordinate Grid – lets the user toggle the GPS coordinate grid

Logout – lets the user log out from the system

The user can also use the keyboard to navigate in the main view:

• arrow keys – scroll/pan the view

• PageUp, PageDown – zoom the view in and out

As the user changes the view, the appropriate data segment of the virtual map is requested and
downloaded from the server, and therefore at any moment the client needs to keep only a minimal
amount of data, which results in its fast and efficient performance.
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Figure 25: Flight plans avoiding no-flight zones
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6 Negotiation based Deconfliction

The designed ATC core system plans deconflicted flight routes entirely in a distributed manner.
There is no central planner managing all flight plans for the simulated area. Therefore the decon-
fliction technology (while developed with in the multi-agent ATC model) is ready for deployment
on autonomous vehicles without any central point of control.

Simulated airplanes are independent agents. Each agent representing an aircraft auto-pilot
is a self-interested entity which prepares a detailed flight plan for the airplane with respect to
waypoints specified in the airplane’s mission. Each simulated airplane is surrounded by a number
of concentric spherical zones, see Figure 26 (sorted by its radius):

communication
zone

alert
zone

safety
zone

collision zone

Figure 26: Communication, Alert, Safety and Collision Zones around each aircraft

− Communication zone – is the outermost one. It represents the communication range of the
data transmitter on the aircraft board. Using this data, transmitter plane agents can send
data packets to other planes which are located within the specified spherical zone defined by
its radius. Two airplanes can communicate in both directions if the distance between them
is smaller than the maximum of their communication radius.

− Alert zone – defines the operation range of the radar on the aircraft board. If another
airplane is located within the zone, plane agents are periodically notified about its relative
position and its flight code; this situation is shown in Figure 26.

− Safety zone – encapsulates the area around an airplane that other airplanes should not
enter in order to minimize the mutual influence of the airplane movements, e.g. airspace
turbulences. Two airplanes should not come closer than the maximum of their safety ranges.
If it happens, airplanes can still continue flying but their flight path may be influenced by
turbulences etc. This is not the case when two or more airplanes fly together in a close
formation.
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− Collision zone – is the innermost zone. It defines the critical contact area. When two
airplanes get too close together and their mutual distance is smaller than the sum of their
collision radiuses, physical contact between them occurs.

Zone ranges are the same for all airplanes of a certain type. Their sizes can be defined inde-
pendently for each of the airplane types.

Airplane A Airplane B

subscribe local FP part

agree

FP update

request a longer part

the plan is too short

FP update

Detect future
collisions

Change FP

Test for collision
with known FPs

collision found

no collision

send updates
to all subscribers

unsubscribe

done

Detect future
collisions

Board Radar
notification alert:
Airplane B
entered the range

Board Radar
notification alert:
Airplane B
left the range

Figure 27: Negotiation protocol

Currently the ATC system solves collisions cooperatively by negotiation between airplanes, see
Figure 27. Let’s suppose an airplane A is flying along its planned optimal flight path through its
mission waypoints. Airplane B enters the alert zone of airplane A. The pilot agent of the airplane
A is notified about its position and flight code by the board radar system. The pilot agent A
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tries to establish negotiation connection with the pilot agent B. In case the connection cannot
be established or the communication is not trusted, the pilot agents should use non-cooperative
approach, described later in this section. If the connection was established successfully, the pilot
agent A subscribes for a local area flight plan of the airplane B. The pilot agent of airplane B sends
an update to the subscriber every time it changes its own flight plan. The update contains the
airplane’s flight plan part for the specified amount of time depending on the flight speed. The
update is also sent when the time length of the previous update was not long enough and it needs
to be updated again. When the pilot agent A receives an update from the pilot agent B, it executes
the collision detection procedure described in section 6.1 on its own flight plan and the received
one. If the detection test is negative, both flight paths are safe for flying. If a collision is found,
the airplanes A and B must change their flight paths.

Currently in the ATC system there is implemented a rule-based approach for changing flight
plans described in section 6.2. The system will be extended so that airplanes that detected future
collisions will iterate through monotonic concession protocol to find new flight plans that are colli-
sion free. Both airplanes prepare a set of possible flight plan changes scored by the utility function.
The utility function includes pilot’s own intentions including flight priority, fuel restrictions, time
restrictions, etc. From all collision free combinations of flight plan pairs, the possible solution set
is created. The iteration protocol results in a commonly accepted solution of the collision. Then
each airplane applies the respective flight plan changes. The iteration solution has many advan-
tages compared to the rule-based approach. The rule-base approach assumes that all airplanes use
the same deconfliction rules. However, the iteration solution can lead to the situation when the
solution is not found fast enough. The process has to be extended with an emergency solution that
is used when the iteration process doesn’t lead to any fast solution. As the emergency solution,
the game theory approach can be used. This will be described in the following paragraph.

The distributed deconfliction approach can be easily extended to non-cooperative deconfliction.
The non-cooperative deconfliction is useful in situations when an airplane has a malfunctioning
transmitter/receiver on its board or in the situation when an airplane is an intruder/enemy which
intentionally sends incorrect future flight path parts to others. The most suitable approach to
the non-cooperative deconfliction is the game theory. In this case the pilot agent tries to change
its own flight plan in a way that would guarantee a minimal collision risk for any future position
of the other airplane. To determine all possible future positions of the other plane, information
about its current position, direction and information about its type can be used. The monitored
object’s flight path is always continuous but there are also certain restrictions that depend of the
airplane type – e.g. minimal/maximal flight speed, minimal radius of turning, etc. When the
pilot agent wants to identify whether or not it should use the non-cooperative deconfliction for a
particular airplane, it can integrate a special detection module. The detection module compares
the notification received from the board radar with the known flight plan part of the aircraft in
the radar range.

6.1 Collision Detection

Integrated collision detector is described in this section. Current detector works with two flight
plans (representation of flight plan is described in the section 4.2). Each flight path contains time
information. The detector goes along both flight paths in the time and tests the condition of safe
flights described in previous section. If time instant is found when the distance between airplane
positions is smaller than maximum of the planes safety ranges, the collision detection process is
positive, see Figure 28. By this way the detector identifies time 1 which represents first collision
point on the plane flight plan.
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Figure 28: Flight plan collision interval

The pilot agent also needs to know the length of the flight plan collision interval for better
situation handling. Detector thus also seeks for the time 2 which represents the last collision
point between the flight plans. If the flight plan part provided by the second aircraft ends before
the last collision point is found, the pilot agent re-requests next part of the other plane’s flight
plan until the last collision point is found.

6.2 Rule-based Approach

A rule-based approach for flight plans deconfliction to no-collision pair is described in this section.
Type of the collision between the airplanes is identified first. The collision type is determined on
basis of angle between direction vectors of the concerned planes at time 1 projected to the ground
plane (defined by X and Y axis), see figure 29.

direction
vector

flight path
center line

2 × 30°2 × 30°
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Figure 29: Identification of the collision type

Depending on the computed angle the plane B is relatively to the plane A it fits into one of the
four sectors. Depending on this sector, one of the following rules is applied on the flight plan of
plane A to avoid the collision:

− Sector 1 – head-on collision, in this case the planes avoids each other on the right side of
the second one. The plane flight plan is changed as shown in Figure 30. The pilot agent
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shifts the points in the time 1 and time 2 perpendicularly to the old direction vector to the
right. Distance between the previous and new points is equal to minimum of safety ranges.
After time 2 flight plan will continue shortest way to the next mission waypoint.

new flight path

old flight path
time

1
time

2

Figure 30: The change of the flight plan applied in the case of head-on collision

− Sector 2 – back collision, there are two subcases: i) the aircraft which is in front of the second
one is faster – aircrafts do not change current flight plans. ii) The back and faster plane
changes its flight plan so it will pass the front plane on the right side without endangering
the front one. The flight plan is similar to that in Figure 30. Again the back plane shifts the
old points in the time 1 and time 2 perpendicularly to the old direction vector to the right
at the distance at least 1.1 times of the safety range.

− Sector 3 – side collision when the other plane has traffic priority. The aircraft needs to slow
down its speed so that it reaches the first collision point later than the second airplane. If
this is not possible due to the minimal flight speed defined for each plane type, the aircraft
slows down as much as possible and shifts the flight point from the first collision point to the
right so that there is no collision between their flight plans.

− Sector 4 – side collision when this plane has traffic priority. The aircraft changes its flight
plan by accelerating up to its maximal flight speed so that it passes the collision point before
the other airplane. The plane only accelerates as much as needed.

The above rule-based changes to the flight plan are done by both planes independently because
the second aircraft detects the possible collision with the first plane from its point of view. After
applying the changes to the aircraft flight plan, it sends an updated local flight plan part to all
subscribers (planes located in its vicinity). The change is also verified against all other known flight
plans of all aircraft monitored by the board radar system. If there is another collision detected,
new changes are applied.

The pilot agent internally uses the flight plan wrapper interface for manipulation with its flight
plan. The change requests are handled as a special set of solver time-constrained waypoints. Special
handling algorithm implements the application of a new change that overrides the old one. The
algorithm decides whether an older solver waypoint should be removed or not.

6.3 Planning Deconflicted Trajectories

The designed ATC system as described does not produce a set of deconflicted route plans for the
aerial vehicles. The novelty and innovation in the approach is that the planning system (during the
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planning phase) provides the flight plans that can contain possible collisions. This makes planning
considerably faster and much more flexible. This results in substantial scalability improvement
affording to operate higher number of aerial vehicles in condensed airspace (can be used e.g. in
situation where a higher number of unmanned aerial vehicles carries out rapid surveillance tasks).

Even though that the flight plans are straighforward and can include possible collisions, the
deconfliction mechanism makes sure that during the flight (simulated in our application by the
simulation phase) the pilot agents negotiate rational deconfliction process. Scalability of the de-
confliction task will be tested in the next phase of the project.

However, the ATC system can be equally used for centralised planning of deconflicted flight
plans. The planning operation of the system can result in a set of plans that are collision free.

This functionality is achieved by adding yet another phase in the operation of the system –
post-planning deconfliction phase/mode. In this phase or better denoted as an operation mode
the simulation process containing the deconfliction processes (as described in 6) is performed. All
resource consuming visualisation operations are disabled and the operation of the aerial vehicles
planes is simulated in very fast manner.

During the post-planning deconfliction phase the collision free flight plans of the simulated
aircraft are remembered. These flight plans are then used in the simulation phase so there is no
other collision. In this situation this phase works as a verification phase.

The ATC system thus would operate in three phases:

1. planning

2. post-planning deconfliction

3. deconflicted plan simulation

Use of ATC system for planning deconflicted airways has only sense in situations when we
know all flight details of all aircraft in advance, all simulated planes cooperatively solve collisions
and they are truthful. When there is at least one non-cooperative/intruder/enemy aircraft, this
pre-planning phase has no sense because we cannot know what will non-cooperative aircraft do
in advance. In this case it is better to use ATC system for re-planning flight plan for solving
possible conflicts just-in-time. The pilot agent can utilize periodical information from the board
radar equipment for monitoring the other plane movement. The agent tries to change only its own
flight plan without any communication based on game theory approach.
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7 Demonstration Disc

The Air Traffic System (ATC) demonstration disc is included in this project deliverable. To use
the demonstration disc the standard computer with DVD mechanics is required. As all scripts are
prepared for the Microsoft Windows 32 bit operating system, we suggest to use Windows 2000/XP.
The JAVA based part of the system can run on any operating system supporting Java Runtime
Environment. The disc contains:

− two demonstration scenarios – first demonstrates integration of the ATC system with external
data sources (see section 5.3.1) and provides remote WEB client access to the system. In this
demonstration, the external content is stored on the disc. Second configuration demonstrates
the mechanism of distributed deconfliction between four airplanes converging to the same
point. In the second scenario the real-time 2D/3D visualizer is used (see section 5.2),

− technical documentation – contains detailed description of classes and properties, this report
and the demo starting procedure,

− sources – all JAVA sources of the system with comments. A-globe sources are included,

− video – demonstration video is provided to show the key features of the project when the
full prototype can’t be started. The video is encoded with the DivX 6.0.3 video codec.
Installation package for the coded is included.

7.1 System Requirements: System Core

One or more host computers with following requirements are required to run the ATC Core. Use
of several computers allows higher number of deconflicted airways to be planned because planning
is handled in a distributed manner based on plane-to-plane negotiation.

− JAVA supported operating system with 512MB RAM at least and TCP/IP protocol support,

− Java Runtime Environment 1.5 or higher (version for Windows 32bit is pre-installed on the
distribution disk),

− network connection between all computers running Agents Core System (not necessary if
whole system is running on the one host) without any firewall restrictions.

7.2 System Requirements: Remote WEB Client

− standard PC with network connection to the System Core host (intranet/internet),

− Windows 32bit, Linux, Mac OS X, Sun OS (sparc or x86), 512 MB RAM at least,

− graphics drivers with OpenGL support,

− pre-installed Java Web Start (Java Runtime Environment 1.5 or higher is optional because
it can be downloaded and installed by Java Web Start automatically),

− any internet browser associating the Java Web Start application with JNLP extension.
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7.3 System Requirements: Real-time 2D/3D Visualizer

− Windows 32bit operating system, CPU 1GHz+, RAM 512MB+ and TCP/IP protocol sup-
port,

− graphic card with hardware 2D/3D acceleration and OpenGL support in the drivers,

− minimal screen resolution 800x600 pixels,

− network connection to the Core System host (only necessary when real-time visualizer is
running on different host).
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